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Abstract

Sediment transport models require appropriate representation of near-bed processes. We aim here to explore

the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under

the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is

able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the

sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current

conditions and sediment diameters in the range 210 µm to 460 µm. The numerical results confirm that

the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating

the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model

is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment

erosion. A common bed load transport rate formulation and two typical reference concentration approaches

are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and

parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to

the time derivative of the bed shear stress.

Key words: sediment transport modelling, sheet flows, sediment erosion, bed load transport rate,

boundary layer

1. Introduction

The coastal, marine and offshore engineering communities require sediment transport models with

demonstrable predictive skills, the scales of which usually range from metres to tens of kilometres. Because

of limitations on computing resources, small-scale processes can not always be resolved and instead need to

be accounted for via subgrid scale modelling. This is particularly pertinent for estimating sediment

transport, for which near-bed processes are predominant. Such processes usually occur within the wave

boundary layer, which is on the order of 10 cm and thus may not be resolved. In addition, sediment
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transport also involves very near bed processes such as bed load transport rate, which occurs at a scale on

the order of a centimetre. Subgrid scale modelling is then required to describe the near-bed

hydrodynamics and sediment dynamics, and many different parameterizations have been introduced and

implemented. Nevertheless, near-bed results and sediment transport rates are still not very well predicted

(e.g., Grasmeijer et al., 2005). Discrepancies between predictions and measurements of the order of a

factor of ten are common for near-bed concentration, suspended load transport (Grasmeijer et al., 2005)

and bed load transport (Kleinhans and Grasmeijer, 2006). Such disparity in turn results in questionable

morphological predictions (Walstra et al., 2005). Further improvements on both transport formulations

and on the near-bed description are necessary.

The most common modelling approach is to consider that sediment remains dilute and use an

advection-diffusion equation to obtain the suspended sediment concentration. Such an approach is used in

models ranging from coastal area models (e.g., Lesser et al., 2004; Warner et al., 2008) to some intrawave

sheet flow models (e.g., Ruessink et al., 2009; Hassan and Ribberink, 2010). In coastal models, the settling

velocity, the sediment diffusivity and the exchange of sediment between the bed and the suspension (i.e.,

erosion and deposition) usually all need to be further specified. Sediment bed level changes are tracked by

applying the sediment mass conservation between the bed and the suspension: first calculating the bed

mass change due to erosion, deposition, and the divergence of the horizontal bed load fluxes, and then

translating it into a bed level change. Near-bed processes are not resolved and thus have to be

parameterized, usually in a wave-averaged manner. Such formulations need to provide information on bed

load transport rate and erosion rate, which in turn requires appropriate description of the bed shear stress.

For intrawave models, the near-bed processes may not be entirely resolved and some parameterization may

be necessary. Most common is providing a mathematical formulation for the intrawave erosion rate,

through a reference concentration for example (e.g., Amoudry et al., 2005; Ruessink et al., 2009; Hassan

and Ribberink, 2010).

Such effort, both for intrawave and wave-averaged expressions, has traditionally been pursued through

empirical means. But some advanced small-scale local models are now able to fully resolve near-bed

sediment transport and could thus be used to gain insight on the parameterizations pertinent to larger

scale models. For example, detailed process models are now able to represent very near bed sediment

behaviour under the sheet flow regime using descriptions of two-phase sediment fluid interactions (e.g.,

Dong and Zhang, 2002; Hsu et al., 2004; Li et al., 2008) and granular flow dynamics (e.g., Jenkins and

Hanes, 1998; Drake and Calantoni, 2001). Similar two-phase models have been developed for

multi-dimensional studies (e.g., Zhao and Fernando, 2007; Amoudry and Liu, 2009), but their applications

remain limited to scour problems. Other multi-dimensional models typically aim to resolve complex

hydrodynamic processes, such as vortex formation and shedding in oscillatory flows over rippled beds (e.g.,

Malarkey and Davies, 2002; Zedler and Street, 2006) and coherent vortex structures (Zedler and Street,
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2001; Vittori, 2003), so as to assess their influence on sediment transport.

In spite of the relatively advanced state of process modelling for sediment transport under sheet flow

conditions, sucessful models that do not require near-bed empirical parameterizations are still too rarely

used as investigative tools. We aim here to discuss the parameterization of near-bed hydrodynamic and

sediment processes using small-scale numerical results obtained with a validated two-phase sheet flow

model. This model has been introduced in Hsu et al. (2004) and Amoudry et al. (2008) and validated for

sand transport under the sheet flow regime in Amoudry et al. (2008). It is based on a two-phase approach

that includes a modified k − ε closure accounting for the influence of the particles on the fluid turbulence,

and a modified collisional theory to describe the inter-particle interactions. Common near-bed empirical

parameterizations (e.g., bed load transport rate, reference concentration) are not employed and can

instead be assessed due to the good predictive ability of the model and the high level of physical

description and resolution.

In this paper, we will focus on the bed shear stress, the bed load transport rate and the erosion flux (also

called resuspension, or pick-up), which are three of the most important quantities commonly

parameterized. We will first describe in further detail the implementation of the two-phase sheet flow

model. We then discuss the numerical results and the subsequent parameterizations for the bed shear

stress, the bed load transport rate and the erosion rate. In particular, the bed load transport rate is

compared to a common semi-empirical formulation and the erosion rate to two widely used formulations

for the reference concentration.

2. Two-phase sheet flow sediment transport modelling

2.1. Model description

The sheet flow model of Hsu et al. (2004) and Amoudry et al. (2008) solves concentration-weighted

averaged mass and momentum conservation equations for both a sediment and a fluid phase. Fluid phase

stresses are calculated using the turbulent viscosity hypothesis and a k − ε model that is modified to

account for the two-phase approach and for the influence of the sediment particles on the fluid turbulence.

Sediment phase stresses are calculated using a modified collisional theory that provides a mathematical

description of the particle-particle interactions (see appendix and Amoudry et al. (2008) for more details).

Computations are performed from within the sediment bed, in which there is no sediment motion,

throughout the bottom boundary layer (see figure 1). The time-dependent location of the bed is thus part

of the model’s solution and is determined using a Coulomb failure criterion (Hsu et al., 2004).

This two-phase sheet flow model has already been described in detail in Hsu et al. (2004), Amoudry (2008)

and Amoudry et al. (2008), and a detailed description is presented in the appendix. It has been validated

against a number of independent data sets. Hsu et al. (2004) tested the sheet flow model for relatively
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massive particles against the data of Sumer et al. (1996) for steady flows, and against intrawave sediment

velocity and concentration data from Asano (1995) for oscillatory flows. Amoudry et al. (2008) validated

the model for sheet flow sand transport against data obtained in oscillatory water tunnels with

Conductivity Concentration Meters for intrawave sediment concentration in the sheet layer

(Dohmen-Janssen, 1999; O’Donoghue and Wright, 2004) and for sediment velocities and fluxes in the sheet

layer (McLean et al., 2001). Data obtained from a boroscopic technique for sediment velocity under steady

flows (Dudley, 2007) were also reproduced by the model. Overall, these numerous model-data comparisons

demonstrate the good predictive behaviour of the model for near-bed intrawave concentration, velocities

and sediment fluxes.

The main characteristic of this model is its ability to represent and fully resolve near-bed sediment

dynamics, including the sheet layer and the pick-up layer (layer where concentration is anti-phase with

flow velocity), following theoretical physical considerations. In particular, the near-bed gradients can be

resolved, and both bed load transport rate and erosion rate are not parameterized but rather are results of

the model. Near-bed information can thus be obtained and used to help assess near-bed parameterizations

used in other models for the bed shear stress, bed load transport rates, and erosion flux. It differs in that

aspect from sheet flow models that use near-bed empirical parameterizations for the reference

concentration (e.g., Amoudry et al., 2005; Ruessink et al., 2009; Hassan and Ribberink, 2010) and for the

bed load transport rate (e.g., Hassan and Ribberink, 2010). We also believe that it offers more insight on

the small-scale physics involved than models that employ an empirical formulation for the sediment phase

stresses (e.g., Dong and Zhang, 2002; Li et al., 2008).

However, limitations exist. The two main limiting issues concern the turbulence closure and the collisional

granular flow theory used to respectively calculate fluid and sediment stresses. The turbulence closure

implemented in Amoudry et al. (2008) reduces to a typical k − ε model for clear fluid (e.g., Justesen,

1991). Such closure has been found to reproduce the intrawave wave boundary layer dynamics reasonably

well, even if some discrepancy in model-data comparisons usually remains in the decelerating stage

(Justesen, 1991). Furthermore, turbulent bursts, which have been linked to strong suspension events for

fine sand (D50 < 0.2 mm), cannot be resolved by the ensemble-averaged approach used in the model.

Shortcomings for the sediment stress formulations are mainly due to particle-particle interactions not

occurring in the collisional regime (Amoudry et al., 2008), which typically happens for slower flows and

finer sediments. These issues combine to explain the poor behaviour of the model observed for fine sand.

2.2. Model implementation

In this paper, we use this sheet flow model under a number of flow and sediment conditions that remain

within the limitations just discussed. The model is implemented in one dimension using a finite-difference

discretization with a variable vertical grid size, which has a minimum of 0.3 mm in the near-bed region.
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The model is driven by a horizontal pressure gradient (Hsu et al., 2004; Hsu and Hanes, 2004) leading to

the free stream velocities (fluid velocity 10 cm above the undisturbed bed location) represented by

equation 1 and summarized in table 1. The top boundary condition has been kept as a rigid lid (Hsu

et al., 2004) in accordance with laboratory experiments used for model validation. The bottom boundary

condition is located within the sediment bed, the concentration is fixed at 0.635, the velocities are fixed at

zero, and the turbulence is determined from a log-law. Other conditions have been tested and found not to

impact the results due to the bottom boundary location being within the sediment bed (Amoudry, 2008).

Because the model cannot accurately reproduce the initiation of sediment motion, an artificial initial

condition is specified (Hsu et al., 2004), following which the concentration decreases linearly with height

and the flow is at rest. Computations are then performed with the vertical velocity remaining zero (Hsu

et al., 2004) before applying the time-dependent pressure gradient. All simulations were run for 20 wave

cycles. The results were always found to reach a quasi-steady state quickly (less than 5 wave cycles) and

the last fifteen cycles were used for phase and wave averaging.

A total of 79 arbitrarily chosen cases were simulated (table 1), spanning sediment grains of diameter from

210 µm to 460 µm and of constant specific gravity s = 2.65. Flows consisted of combinations of currents

and (dominant) waves for which the free stream velocity is prescribed as follows:

U0(t) = U0c + U01 cos
2πt

T
+ U02 cos

4πt

T
(1)

with U0c being the current velocity, U01 and U02 the amplitudes of the first and second wave velocity

harmonics (in all cases U01 > U02), and T the wave period. All cases simulated present values of

U01ω/(s− 1)g (ω ≡ 2π/T ) below 0.3, thus corresponding to a quasi-steady regime (Sleath, 1994). Even

though several wave periods have been prescribed, little dependence of the results on the period has been

observed. Noticeably, cases 6 and 47 correspond to some experiments of Dohmen-Janssen (1999), cases 20

and 76 to experiments of O’Donoghue and Wright (2004), and cases 51 and 52 to the experiments of

McLean et al. (2001), which were all used for the model validation in Amoudry et al. (2008).

3. Bed shear stress

Near-bed sediment transport parameterizations are commonly expressed in terms of the Shields parameter

θ, which is the non-dimensional bed shear stress, θ = τb/(ρ(s− 1)gd) where τb is the bed shear stress, ρ the

fluid density, and d the sediment grain diameter. Appropriate bottom boundary layer models are crucial

for obtaining accurate θ values since vertical resolution will not be sufficient to resolve the near-bed

gradients in coastal models. Most bottom boundary layer models use a friction coefficient to relate the bed

shear stress to the flow velocity, usually through a quadratic law. In the case of pure currents and

velocities evolving on timescales much longer than the numerical time step (e.g., tidal currents), the
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friction coefficient is specified directly or by assuming a logarithmic velocity profile. The later case has

been extensively studied in the past decades and was also discussed in Amoudry et al. (2008).

For wave and wave-current bottom boundary layers, hydrodynamic process studies usually find a phase

lead of the bed shear stress with respect to the free stream velocity (e.g. Jensen et al., 1989; Guizien et al.,

2003) and so do the present results (figures 2 and 3). For large-scale models, the aim is to account for the

effects of the oscillatory flow without resolving individual waves. To that end, a common approach is to

use again a quadratic friction law for which the wave-current friction coefficient is specified either with an

explicit formula (e.g., Madsen, 1994) or with an implicit method (e.g., Grant and Madsen, 1979), and for

which the bed roughness may be enhanced by the waves (e.g., Madsen, 1994). For intrawave modelling,

quadratic laws are also used (e.g., Ribberink, 1998; Hsu et al., 2006; Gonzalez-Rodriquez and Madsen,

2007). Usually, both a constant friction factor and bed shear stress in phase with the orbital velocity are

assumed. However, neglecting the phase lead of the bed shear stress can lead to significant errors (e.g.,

Nielsen and Callaghan, 2003) and the constant friction factor is contrary to a simple conceptual model of

the intrawave bed shear stress (Gonzalez-Rodriquez and Madsen, 2007). This in turn requires better

parameterization of both the phase lead and friction factor for intrawave modelling (e.g., Madsen, 1994;

Gonzalez-Rodriquez and Madsen, 2007).

The bed shear stress is calculated for the sheet flow simulations as the total shear stress at the undisturbed

bed level (i.e., z = 0 and bed level for no flow condition). Five examples of the intrawave bed shear stress

are shown in figure 2. The form of the intrawave bed shear stress is important for developing simple

wave-averaged models, and while it can reasonably be approximated by a decomposition into mean and

first two sinusoidal harmonics (i.e., θ(t) = θc + θw1 cos(ωt) + θw2 cos(2ωt)) for the example in the second

panel of figure 2, it is generally not the case, as illustrated by the other examples in figure 2.

The bed shear stress is found to have a phase lead (φτ ) mostly in the range of 10 to 15 degrees with

respect to the free stream velocity (figure 3) and we observe a dependence on the wave parameters. Such a

phase shift can for example be approximated from the results of a wave-current boundary layer model

(Madsen, 1994), which gives φτ expressed in radians:

φτ =
π

60

[

11 − 2.0 log10

(

U0max

kNω

)]

for 0.2 <
U0max

kNω
< 103 (2)

where kN is the equivalent roughness. Our numerical results provide an estimate of the phase lead, but the

roughness is a priori unknown. One can then use equation 2 to obtain kN values from the phase lead. This

yields roughnesses in the range d < kN < 10d, which is consistent with the previous findings of Wiberg and

Rubin (1989), Sumer et al. (1996), and Amoudry et al. (2008). One can also focus on the inverse problem

and assess equation 2 in combination with a roughness predictor. For example, the numerical results are

plotted in figure 3 using a roughness value calculated following Wiberg and Rubin (1989). Interestingly,
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equation 2 represents relatively well the phase lead from the numerical simulations, including for the cases

such that U0max/kNω > 103.

4. Bed load transport rate

Sediment transport is supported by two main mechanisms: interactions between sediment grains and

agitation of fluid turbulence. Bed load is usually defined as the region where sediment motions and

suspension are dominated by particle-particle interactions. Conversely, the primary mechanism in the

suspended load is turbulent suspension, which is due to the fluid agitation. As mentioned in Amoudry

et al. (2008), both the sediment stress gradient, which mathematically represents here the suspension term

due to inter-particle interactions, and the fluid turbulent suspension term can be explicitly calculated from

the numerical results (see appendix for more details). A comparison of their relative importance then

enables distinction between bed load and suspended load and leads to information on the bed load layer

(figure 4). We choose to define the bed load in our results as the region for which the sediment stress

gradient is greater than the turbulent suspension. This corresponds to the layers as depicted in figure 4

where the grey dashed line marks the limit between suspended load and bed load. Although continuous,

the transition from bed load to suspended load is observed to be rather sharp and thus provides reasonable

precision on the bed load layer (figure 4). In turn, such information helps determine various near-bed

quantities such as the bed load transport rate, for which we expect reasonable predictions given the

favourable model-data comparisons for near-bed sediment fluxes in Amoudry et al. (2008).

4.1. Current approaches

Accurately predicting sediment transport rates has been an important issue for several decades. Bed load

transport rates have been measured experimentally using bed load traps, leading to empirical formulae

(e.g., Meyer-Peter and Müller, 1948; Wilson, 1966; Ribberink, 1998). The most common formulations

relate the non-dimensional transport rate ΦB to the Shields parameter as:

ΦB =







mθn (θ − θc)
p

θ ≥ θc

0 θ < θc

(3)

where θc is the critical Shields parameter for incipient motion, m is usually taken as a constant and

n + p ≈ 1.5 (table 2). While such a relationship was first developed for steady flows, it has since been

extended to time-dependent transport rates in wave-current combinations as long as a quasi-steady

approach is valid (Ribberink, 1998). In the case of coastal area models for which the wave oscillations are

not resolved, the net transport rate is related to some measure of the bed shear stress over a wave period.

For example, Soulsby and Damgaard (2005) integrated a vectorial time-dependent formula (equation 3)
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over the wave period and expressed the bed load transport rate in terms of the mean and the amplitudes

of the first and second harmonics of the bed shear stress.

A crucial and problematic issue in experimental studies is the distinction between bed load and suspended

load. Measurements of bed load transport rates usually rely on the assumption that the trap only catches

sediment transported as bed load. While this may be reasonable for massive particles unlikely to get

suspended (as in Meyer-Peter and Müller (1948) for example), it will lead to an overestimation of the bed

load transport rate for finer particles which are transported as suspended load in a significant manner

(e.g., Hassan and Ribberink, 2010). In addition, sediment traps can induce important flow modifications

and scour leading to measurement uncertainty. In contrast, the sheet flow model provides a new method

for which a clear distinction between bed load and suspended load can be made.

4.2. Numerical predictions

Numerical results for the bed load transport rate and the empirical formula (equation 3 used in a

quasi-steady sense) are compared within a wave period in figure 5 for the same five examples as in figure 2.

For the purely sinusoidal case, the comparison is relatively good throughout the wave period. For the

other cases, the comparison is in general reasonable during the positive cycle (especially in terms of the net

half cycle transport rate) and improves with higher stresses, but there is a recurring discrepancy for the

negative half cycle. This is consistent with the lack of accuracy of the sediment flux predictions during the

negative half cycle observed in Amoudry et al. (2008). Such discrepancy is not seen in the top case of

figure 5 and is also found to increase with decreasing particle diameters. We thus believe that it is caused

by the limitations of the collisional theory for weak forcing and small particles. In turn, this disparity will

lead to a positive bias for the net bed load sediment transport obtained from the numerical sheet flow

results and will also cause higher errors for the net values in the Stokes waves cases simulated.

The wave-averaged expressions of Soulsby and Damgaard (2005) allow for easy implementation of bed load

calculation in large-scale sediment transport models under a fairly wide range of conditions and we choose

to compare this semi-empirical model to the numerical results obtained with the model of Amoudry et al.

(2008) (figure 6). The circles represent cases for sinusoidal waves superposed on a current, the squares

represent cases for 2nd-order Stokes waves without any current, and the diamonds are for 2nd-order Stokes

waves superposed on a current. This last type of flow is of particular interest given the lack of

experimental data (Soulsby and Damgaard, 2005). Different grain diameters are represented by symbols of

different colour. The general agreement can be considered as quite good as most points fall within a factor

two of perfect agreement. Following the previous discussion on the respective accuracies of the numerical

and experimental methods, we expect a relative overestimation from the numerical results (points above

the diagonal) for 2nd-order Stokes waves and a relative overprediction from the semi-empirical

formulations (points under the diagonal) for smaller sediment diameter, both of which are indeed observed.

8



4.3. Improved parameterization

While there is a somewhat general agreement concerning the functional form of the bed load transport

rate, there have been a number of different values proposed for m as shown in table 2. Detailed inspection

of figure 6 reveals that transport rates for the smaller sediments generally are below the perfect agreement

line while transport rates for the larger sediments are above. In a simple attempt to improve the bed load

predictions, we calculated for each sediment diameter the best value for m by minimizing the

root-mean-square error between numerical results and the semi-empirical equations. We neglected the

cases for second-order Stokes wave forcing for which the numerical model is expected to perform worse. A

distinct dependence on the sediment diameter is obtained and illustrated in figure 7 where a factor two

difference is observed between small and large diameters. With the exception of the largest diameter, the

proportionality factor is found to decrease with decreasing grain diameter. This is consistent with

suspension criteria (e.g., Bagnold, 1966), which can be seen as expressing that at identical Shields

parameter, large particles are transported as bed load, while fine particles are transported as suspended

load (see also figure 1 of Amoudry et al. (2008)). Mathematically, this behaviour can be well approximated

by the following relationship

m = 17.75 ×



1 −
exp

(

− exp
(

Rp−15
10

))

exp
(

− exp
(

− 15
10

))



 (4)

where Rp = D50

√

(s − 1)gD50/ν is the fall parameter. The positive bias of the numerical predictions is

also observed in the values numerically calculated for the larger diameters and the factor 17.75 in equation

4. The improvement made by adding equation 4 to the formulation of Soulsby and Damgaard (2005) is

shown in figure 8. There is indeed a better agreement when using equation 4, in particular for the larger

transport rates. The root-mean-square error between numerical results and the parameterization

diminishes from a factor 2 to a factor 1.86 when implementing equation 4. While this may seem modest,

the improvement is clearer for non-dimensional transport rate over 0.2, the error diminishes from a factor

2.04 to a factor 1.85.

5. Erosion rate

The net bottom boundary sediment flux is commonly divided in an upward part (erosion, E) that

represents the exchange of sediment from the bed to the flow and a downward part due to gravitational

settling (deposition, D). A numerical erosion flux can thus be derived from collocated and simultaneous

numerical results of vertical sediment flux and sediment concentration, which in turn enables assessment of

diverse parameterizations. Both E and D hereafter will be taken to have the dimension of a velocity,

corresponding to a sediment mass flux divided by the sediment density.
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5.1. Current approaches

The main method employed to express erosion of non-cohesive sediments in terms of flow and sediment

parameters uses the assumption that the disequilibrium introduced by the unsteadiness remains mild, and

that the erosion flux is equal to the entrainment rate under equilibrium conditions (Garcia and Parker,

1991). The erosion flux is then related to a reference concentration value through the settling velocity, i.e.

E = crefWs (e.g., Harris and Wiberg, 2001; Lesser et al., 2004). This approach usually provides a formula

for the reference concentration at some reference level, i.e. Cref at zref , where both Cref and zref may be

functions of flow and sediment parameters such as the Shields parameter (non dimensional bed shear

stress), the sediment specific gravity and the sediment diameter. The deposition is then calculated using

the non-equilibrium concentration D = cbWs, where cb is the actual bottom concentration. Many reference

concentration relationships have been introduced and the most commonly used formulae in large-scale

models remain that of Smith and McLean (1977), van Rijn (1984) (updated most recently to van Rijn

(2007)) and Zyserman and Fredsoe (1994).

We explicitly introduce the formulations of Zyserman and Fredsoe (1994) and van Rijn (2007) since they

are used in comparisons with numerical results in the following section. The expression of Zyserman and

Fredsoe (1994) relates the reference concentration to the Shields parameter at an elevation of two grain

diameters above the bed:

cref =
0.331 (θ − 0.045)

1.75

1 + 0.331
0.46 (θ − 0.045)1.75 (5)

Comparatively, the expression of van Rijn (2007) relates the reference concentration for non-cohesive

sediments to both the Shields parameter and the non-dimensional particle parameter

D⋆ = d[(s − 1)g/ν2]1/3:

cref = 0.015
d

zref

(θ/θcr − 1)
1.5

D0.3
⋆

(6)

where θcr is the critical bed-shear stress according to Shields and the reference level is chosen as

zref = 20d with a minimum value of 1 cm.

5.2. Numerical predictions

Although it is dimensionally consistent with a concentration, the reference concentration really aims to

parameterize the erosion flux. As such, comparisons between existing formulas and the numerical results

should not use the numerical concentration per se but rather the ratio of the erosion flux over the settling

velocity. The erosion flux itself is calculated from the net vertical flux and gravitational settling. All cases

studied here present values for U0ω/(s − 1)g below 0.3 (table 1), and are thus expected to exhibit

quasi-steadiness (Sleath, 1994), following which erosion and deposition should be in quasi-equilibrium.
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This is indeed observed for all cases, with erosion and deposition being about an order of magnitude

greater than the net vertical flux and in quasi-equilibrium.

Numerical values for the reference concentration were calculated at a height of one centimetre above the

undisturbed bed (20d < 1 cm for all our cases) for comparison with the van Rijn (2007) formula and at a

height of twice the sediment diameter for comparison with the Zyserman and Fredsoe (1994) formula. Five

examples (identical cases to those in figures 2 and 5) of the intrawave comparisons are presented in figures

9 and 10. There is a significant disagreement between the numerical results and the van Rijn (2007)

formula, as neither the magnitude nor the phase of the reference concentration match. We attribute such

discrepancy to the reference location employed being in the suspended region. It is always higher than

twenty grain diameters from the undisturbed bed, and at such elevation, the vertical flux, the erosion and

thus the reference concentration exhibit a phase lag with respect to the bed shear stress as observed in

figure 9.

Comparatively, there is a rather good agreement for the Zyserman and Fredsoe (1994) formula. Still, there

is a small tendency for overprediction from the Zyserman and Fredsoe (1994) formula with respect to the

numerical results for the higher bed shear stresses and there is a mismatch at flow reversals. The

seemingly constant value for the numerical reference concentration is due to the combination of being in

quasi-equilibrium between erosion and deposition, and the reference location being close to the top of the

pickup layer. The quasi-equilibrium implies that the reference concentration is close to the actual

concentration, which is somewhat constant at the top of the pickup layer (O’Donoghue and Wright, 2004).

A wave-averaged reference concentration value can also be deduced from the wave-averaged erosion flux.

Models then usually relate the reference concentration to some measure of the wave-current bed shear

stress, usually the maximum value. Figure 11 presents the wave-averaged values for the numerical

reference concentration and the comparison with Zyserman and Fredsoe (1994) and van Rijn (2007)

formulas. While the Zyserman and Fredsoe (1994) formula gives values only modestly larger than the

numerical model, there is a significant disagreement between the numerical results and the formula of van

Rijn (2007). Such results for the reference concentration taken two diameters above the undisturbed bed

are consistent with experimental results of O’Donoghue and Wright (2004) following which the

concentration at z = 2d is almost constant with time-averaged values ranging from about 0.2 to 0.25 for

the medium and coarse sands.

5.3. Comments on erosion parameterization

Following from general dimensional analysis on sediment transport (e.g., Yalin, 1977), the dimensionless

erosion rate should depend on the specific gravity of the sediment, the Shields parameter, the fall
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parameter Rp = d
√

(s − 1)gd/ν, and a dimensionless parameter involving the flow period ΠT .

E
√

(s − 1)gd
= f(s, θ, Rp, ΠT ) (7)

Since we are interested in sand transport in water, the specific gravity of the sediment is a constant. As

mentioned previously we did not observe a significant dependence on the period in the range considered.

The numerical results in figure 11 for different sediment diameters and flow conditions almost all collapse

on a single curve, which seems to indicate that the relationship

E

Ws
= cref (θ) (8)

is a reasonable parameterization. This does not mean that the erosion rate is independent of the fall

parameter but rather that it will follow the dependence of the fall velocity, i.e.

E = Ws (Rp) cref (θ) (9)

It also appears from figure 11 that the reference concentration taken two diameters above the bed reaches

a maximum with the bed shear stress that is smaller than the one incorporated in the Zyserman and

Fredsoe (1994) formula. For the range of Shields parameters studied, this is not observed for the reference

concentration one centimetre above the bed, for which there is a small linear increase of the reference

concentration value with the bed shear stress.

In the case of the reference concentration very close to the bed (zref = 2d), a formula following the form of

Amoudry et al. (2005)

cref (θ) =



















0 for θ < θc

cmax
θ−θc

θs−θc

for θc < θ < θs

cmax for θs < θ

(10)

where cmax = 0.2, θs = 1.08 and θc = 0.15 would give a reasonable approximation both of the Zyserman

and Fredsoe (1994) formula for small to moderate Shields parameters and of the numerical results for high

Shields parameters. The main discrepancy between equation 10 and Zyserman and Fredsoe (1994) occurs

for small Shields parameter values, where the sheet flow numerical model can unfortunately not provide

information. Using cmax = 0.2 as an upper-bound for the Zyserman and Fredsoe (1994) reference

concentration would also lead to better agreement with the numerical data for the intrawave erosion.

In the case of the reference concentration some distance from the bed (zref = 1cm), the linear dependence

is best approximated by

cref = 6.1 × 10−3θmax + 7.9 × 10−4 (11)

Naturally, this equation is only valid for the range of maximum Shields parameters considered in this

paper (i.e. 1.2 < θmax < 2). In particular, equation 11 obviously fails to represent the correct processes
12



both for very small stresses by predicting non zero erosion for zero bed shear stress and for very large

stresses since it lacks an upper bound. Interestingly, such linear dependence of the reference concentration

on the bed shear stress (in both cases) results in an erosion formulation similar to that for cohesive

sediments E = M [τb − τc] where both M and the critical stress τc depend on the depth of erosion (e.g.,

Sanford and Maa, 2001).

Perhaps more importantly than providing information on erosion and deposition, the sheet flow numerical

model calculates the instantaneous net vertical sediment flux (i.e. erosion minus deposition). In turn, we

use these numerical results to attempt to directly model this quantity. Figure 12 shows ten examples for

the intrawave vertical sediment flux two diameters above the undisturbed bed, including the five examples

already shown in figures 2, 5, 9 and 10. The solid line represents an attempt at modelling such flux as a

function of the bed shear stress multiplied by its time derivative with a phase lag:

E − D = CF

[

θ
dθ

dt

]

(ωt + φe) (12)

where CF = 2.0× 10−4 m. The physical reason for the term θdθ/dt is to consider that erosion can be due

to accelerating flow independent of direction (i.e., for θ > 0 and dθ/dt > 0 or for θ < 0 and dθ/dt < 0). In

general, there is a good agreement between equation 12 and the numerical data (the examples in figure 12

do include some of the worst cases). At flow reversals, the agreement is poor but this corresponds to times

where the numerical model is the least accurate (Amoudry et al., 2008). For each case, equation 12 was

tested by choosing the optimal phase lag for best agreement. The phase lag in equation 12 is then found to

decrease with the value of the maximum bed shear stress (figure 13) following

φe = Cφ1
τbmax

ρ
+ Cφ2 (13)

where φe is given in radians and Cφ1 = −58.6 s2/m2, Cφ2 = 0.86.

6. Conclusion

We used a one-dimensional two-phase sheet flow model to study and discuss large-scale parameterizations

of the bed shear stress, bed load transport rate and erosion rate. The model was validated in Amoudry

et al. (2008) against laboratory data acquired under the sheet flow regime. The influence of the sediment

diameter is investigated by varying the grain diameter within the range used previously for validation (i.e.,

210 µm to 460 µm). Different collinear wave and current flows are simulated by changing the current, the

amplitude of the first two velocity harmonics, and the period.

The numerical bed shear stress results confirm several previous observations on the phase lead of the bed

shear stress with respect to the free stream velocity. The formula of Madsen (1994) for the phase lead

describes the present results well. Bed load transport rates are determined from the numerical results and
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are found to agree reasonably well with existing empirical formulations. Dependence with the sediment

diameter is observed and investigated numerically. Bed load transport rates diminish with decreasing grain

diameter, and an improved formula for the bed load transport rate is proposed based on the numerical

results. The importance of the sediment bottom condition for intrawave modelling has already been

mentioned (e.g., Hsu and Liu, 2004) and investigated (e.g., Amoudry et al., 2005). Here, the influence of

the sediment diameter on the erosion rate corresponds to that of the settling velocity and thus confirms

the applicability of the reference concentration. Furthermore, the numerical results are found to agree

significantly better with the Zyserman and Fredsoe (1994) reference concentration formulation than with

that of van Rijn (2007). We attribute the poor agreement in the latter case to an inappropriate reference

location for sheet flows. Such results are consistent with the observations of Amoudry et al. (2005) on the

bottom boundary condition for dilute intrawave sheet flow modelling. The present numerical results

further suggest that the reference concentration taken two grain diameters above the undisturbed bed may

be better represented by setting an upper limit at an approximate value of 0.2, which is consistent with

the experimental findings of O’Donoghue and Wright (2004).

These results can then be implemented in sediment transport models at a larger scale. The results

concerning the bed load transport rate vindicate the implementation of existing formulations such as that

of Soulsby and Damgaard (2005) in both intrawave models and wave-averaged models. They further

suggest the use of a diameter-dependent multiplicating factor for the bed load transport rate, which would

follow the relationship expressed in equation 4. The present results on the reference concentration support

the use of the Zyserman and Fredsoe (1994) formula with an upper limit around 0.2 for intrawave models

aiming to resolve suspended sediment transport in the wave boundary layer under the sheet flow regime

(e.g., Amoudry et al., 2005; Ruessink et al., 2009; Hassan and Ribberink, 2010). Alternatively, such models

may implement equations 12 and 13 for the net vertical flux instead of the reference concentration

approach. For wave-averaged coastal models, implementation of the present results (e.g., equations 10 and

11) may be less straightforward due to the sheet flow regime restriction and issues arising from the

near-bed resolution. Typically, in such models the bottom grid may well be large enough to induce

significant corrections emanating from the difference between near-bed grid elevations and the reference

location. Such corrections are crucial and may be derived assuming a Rouse profile for the concentration.

Finally, it has to be noted that the present numerical results could strongly benefit from further theoretical

improvements. As mentioned in Amoudry et al. (2008), transport of sand under the sheet flow regime falls

close to or past the limit for reasonable use of the collisional theory. This leads to discrepancies in the

near-bed sediment fluxes and the inability of the model to reproduce fine sand (d < 200 µm) transport.

We believe that both issues would benefit from theoretical description of the particle-particle interactions

more complete than pure collisions.
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A. Two-phase sheet flow model description

A.1. Two-phase flow governing equations

The model solves the following concentration-weighted averaged equations of motion for the sediment and

fluid phase:

∂ρf(1 − c̄)

∂t
+

∂ρf (1 − c̄)ũf
i

∂xi
= 0 (A.1)

for the fluid phase continuity,

∂ρsc̄

∂t
+

∂ρsc̄ũ
s
i

∂xi
= 0 (A.2)

for the sediment phase continuity,

∂ρf(1 − c̄)ũf
i

∂t
= −

∂ρf(1 − c̄)ũf
i ũf

j

∂xj
+ ρf (1 − c̄)gi

−(1 − c̄)
∂P̄ f

∂xi
+

∂τf
ij

∂xj

−βc̄
(

ũf
i − ũs

i

)

+ β
νT

σc

∂c̄

∂xi
(A.3)

for the fluid phase momentum conservation and

∂ρsc̄ũ
s
i

∂t
= −

∂ρsc̄ũ
s
i ũ

s
j

∂xj
+ ρsc̄gi − c̄

∂P̄ f

∂xi
+

∂τs
ij

∂xj

+βc̄
(

ũf
i − ũs

i

)

− β
νT

σc

∂c̄

∂xi
(A.4)

for the sediment phase momentum conservation. In these equations, c̄ is the ensemble averaged sediment

concentration, ũf
i = (1 − c)uf

i /(1 − c̄) and ũs
i = cus

i/c̄ are respectively the ith component of the

concentration-weighted averaged fluid phase velocity and the concentration-weighted averaged sediment

phase velocity. P̄ f is the ensemble-averaged fluid pressure, τf
ij and τs

ij are the fluid and sediment stresses.

The last two terms in the momentum equations represent the interphase momentum transfer, where β is a
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drag coefficient expressed as a function of the particle Reynolds number Rer = Urd/νf itself based on the

relative velocity magnitude Ur = |~us − ~uf |:

β =
µf

d2
(18.0 + 0.3Rer)

1

(1 − c̄)n
(A.5)

with µf the fluid viscosity. The concentration dependence expresses higher drag observed for a group of

particles than for single particles and follows the experimental findings of Richardson and Zaki (1954)

where n is also a function of Rer. The second of these terms, containing the concentration gradient, is

often called turbulent suspension; and it represents the turbulent flux of sediment as modelled following

the gradient diffusion hypothesis with νT the fluid turbulent eddy viscosity and σc the Schmidt number.

The two terms corresponding to the different mechanisms for sediment suspension, discussed in section 4,

are explicitly given in equation A.4 when applied to the vertical sediment velocity. The term

β (νT /σc) (∂c̄/∂z) corresponds to turbulent suspension, while the term (∂τs
zz/∂z) represents the

inter-particle interactions. The ratios plotted in figure 4 are then each of these terms divided by their sum.

A.2. Sediment stresses

The closure scheme for the sediment stresses is based on different descriptions of the inter-particle

interactions throughout the water column. In the sediment bed (below the solid line in figure 1), sediment

particles are stationary and sediment stresses are not calculated. Above the bed the sediment stresses are

calculated following a collisional granular flow theory (Jenkins, 1998) that is modified to account for the

transition between the sediment’s solid behaviour in the bed and the fluid-like behaviour above the bed.

Far away from the bed, sediment concentration is dilute and the sediment stresses can be neglected.

In the collisional region, the sediment stresses are calculated using the constitutive relations derived for

collisional flows of identical, frictionless, nearly elastic spheres (Jenkins, 1998) and a balance equation for

the particle fluctuating energy ks derived from the sediment-phase momentum equations. The balance

equation for ks is

∂ρsc̄ks

∂t
+

∂ρsc̄ksũ
s
j

∂xj
= τs

ij

∂ũs
i

∂xj
−

∂Qj

∂xj

−γ + 2βc̄ (αkf − ks) (A.6)

where both the energy flux Qj and the dissipation γ are calculated using the collisional granular flow

theory and expressed as functions of the sediment concentration, ks and other sediment properties

(Jenkins, 1998). α is a parameter that measures the degree of correlation between the fluid velocity

fluctuations and the sediment velocity fluctuations and is a function of several time scales involved (Hsu

et al., 2004). The collisional sediment stress tensor is given by:

τsc
ij =

(

−pc + ω
∂ũs

k

∂xk

)

δij

+µc

(

∂ũs
i

∂xj
+

∂ũs
j

∂xi
−

2

3

∂ũs
k

∂xk
δij

)

(A.7)
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where the collisional pressure pc, the bulk viscosity ω, and the shear viscosity µc are also functions of the

sediment concentration, ks and other sediment properties such as the grain diameter and the mass density

(Jenkins, 1998).

Furthermore, the solid-like rigid structure of the bed is not broken at once to give rise to the fluid-like

region but rather follows a transition where the particles first move while staying in contact and

interacting frictionally with their neighbours. In this regime, which is taken to occur between the random

close-packing value c⋆ = 0.635 (also the maximum possible concentration) and the random loose-packing

value (lowest concentration so that grains remain in contact) c⋆ = 0.57, the effects of the frictional bonds

need to be accounted for. In that concentration range, the collisional shear viscosity is greatly increased

(Bocquet et al., 2001) and an extra normal stress component due to homogeneously packed identical

spheres in Hertzian contact is also added to the total sediment stress (Hsu et al., 2004).

A.3. Fluid turbulence closure

The concentration-weighted averaged fluid Reynolds stresses are modelled using the turbulent eddy

viscosity hypothesis and, following from the concentration-weighted average, we scale here the eddy

viscosity using kf , εf and the concentration:

νT = Cµ

(1 − c̄)k2
f

εf
. (A.8)

Balance equations for both kf and εf can be summarized as follows:

∂K

∂t
+

∂Kũf
j

∂xj
= Pk +

∂T k
j

∂xj
− E − Dp, (A.9)

∂E

∂t
+

∂Eũf
i

∂xi
= Cε1

εf

kf
Pk +

∂T ε
j

∂xj
− Cε2

εf

kf
E

−Cε3
εf

kf
Dp, (A.10)

where K = ρf (1 − c̄)kf , E = ρf (1 − c̄)εf . In the balance equations, Pk is the shear production of kinetic

energy, T k and T ε are transport terms both modelled following a gradient diffusion assumption:

T k
j =

(

ν +
νT

σk

)

∂K

∂xj
and T ε

j =

(

ν +
νT

σε

)

∂E

∂xj
(A.11)

The last term in equations A.9 and A.10, Dp, is due to the phase interaction drag terms in the fluid

momentum equation. It can be either an additional dissipative term (Dp > 0) for the turbulent energy or

an extra production term (Dp < 0) and is expressed as

Dp = 2β(1 − α)c̄kf − β
νT

σc

∂c̄

∂z
(w̃f − w̃s) (A.12)

Complete closure of the turbulence model requires the specification of σc, Cµ, Cε1, Cε2, Cε3, σk and σε.

Common values for these coefficients are σc = 1.0, Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, Cε3 = 1.2, σk = 1.0
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and σε = 1.3, which are the same as the clear fluid values and a Cε3 value chosen based on sediment-laden

jets results (Elghobashi and Abou-Arab, 1983). Here, Cε2 is modified following Amoudry et al. (2008)

Cε2 = Cε20

[

1 + max

(

c1 ln

(

c2
TF

Tp

)

, 0

)

c̄

c⋆

]

, (A.13)

where Cε20 = 1.92, c1 = 2.4 and c2 = 2.
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Table 1: Characteristics of cases numerically simulated.

Case number d (µm) T (s) U0c (m/s) U01 (m/s) U02 (m/s) θmax
U01ω

(s−1)g

1 210 7.2 0.00 1.40 0.24 2.14 0.08

2 210 7.2 0.00 1.71 0.00 2.17 0.09

3 210 7.2 0.12 1.20 0.00 1.66 0.06

4 210 7.2 0.14 1.30 0.00 1.76 0.07

5 210 7.2 0.17 1.41 0.00 1.87 0.08

6 210 7.2 0.28 1.48 0.00 1.95 0.08

7 210 7.2 0.33 1.41 0.00 2.01 0.08

8 230 7.2 0.01 1.20 0.00 1.52 0.06

9 230 7.2 0.11 1.20 0.00 1.57 0.06

10 230 7.2 0.13 1.30 0.00 1.75 0.07

11 230 7.2 0.17 1.41 0.00 1.80 0.08

12 230 7.2 0.26 1.48 0.00 1.98 0.08

13 230 7.2 0.32 1.41 0.00 1.96 0.08

14 250 7.2 0.01 1.20 0.00 1.53 0.06

15 250 7.2 0.10 1.20 0.00 1.57 0.06

16 250 7.2 0.13 1.31 0.00 1.71 0.07

17 250 7.2 0.15 1.41 0.00 1.75 0.08

18 250 7.2 0.33 1.47 0.00 1.95 0.08

19 250 7.2 0.30 1.41 0.00 1.87 0.08

20 270 7.5 0.00 1.20 0.31 1.79 0.06

21 270 7.2 0.01 1.21 0.00 1.48 0.07

22 270 7.2 0.10 1.21 0.00 1.52 0.07

23 270 7.2 0.12 1.31 0.00 1.63 0.07

24 270 7.2 0.16 1.41 0.00 1.72 0.08

25 270 7.2 0.33 1.48 0.00 1.88 0.08

26 270 7.2 0.31 1.41 0.00 1.83 0.08

27 300 7.2 0.00 1.21 0.00 1.47 0.07

28 300 7.2 0.10 1.21 0.00 1.50 0.07

29 300 7.2 0.13 1.31 0.00 1.61 0.07

30 300 7.2 0.17 1.41 0.00 1.68 0.08

(continued on next page)
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Table 1: Characteristics of cases numerically simulated. (contin-

ued)

Case number d (µm) T (s) U0c (m/s) U01 (m/s) U02 (m/s) θmax
U01ω

(s−1)g

31 300 7.2 0.33 1.48 0.00 1.81 0.08

32 300 7.2 0.31 1.42 0.00 1.74 0.08

33 320 7.2 0.00 1.11 0.13 1.47 0.06

34 320 7.2 0.00 1.21 0.15 1.57 0.07

35 320 7.2 0.00 1.31 0.19 1.66 0.07

36 320 7.2 0.00 1.42 0.22 1.68 0.08

37 320 7.2 0.00 1.55 0.48 1.84 0.08

38 320 7.2 0.00 1.72 0.00 1.80 0.09

39 320 7.2 -0.03 1.01 0.00 1.25 0.05

40 320 7.2 -0.02 1.11 0.00 1.31 0.06

41 320 7.2 0.04 1.52 0.41 1.83 0.08

42 320 7.2 0.05 1.11 0.00 1.33 0.06

43 320 7.2 0.06 1.21 0.00 1.47 0.07

44 320 7.2 0.10 1.31 0.00 1.59 0.07

45 320 7.2 0.14 1.42 0.00 1.66 0.08

46 320 7.2 0.13 1.52 0.31 1.82 0.08

47 320 7.2 0.33 1.48 0.00 1.76 0.08

48 320 5.4 0.36 1.46 0.00 1.82 0.11

49 320 9.0 0.32 1.50 0.00 1.69 0.06

50 320 7.2 0.29 1.52 0.00 1.70 0.08

51 320 7.2 0.34 1.53 0.00 1.72 0.08

52 320 7.2 0.54 1.52 0.00 1.77 0.08

53 320 7.2 0.64 1.53 0.00 1.73 0.08

54 350 7.2 0.00 1.22 0.00 1.44 0.07

55 350 7.2 0.09 1.22 0.00 1.47 0.07

56 350 7.2 0.13 1.32 0.00 1.59 0.07

57 350 7.2 0.17 1.42 0.00 1.65 0.08

58 350 7.2 0.33 1.48 0.00 1.71 0.08

59 350 7.2 0.31 1.42 0.00 1.72 0.08

(continued on next page)
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Table 1: Characteristics of cases numerically simulated. (contin-

ued)

Case number d (µm) T (s) U0c (m/s) U01 (m/s) U02 (m/s) θmax
U01ω

(s−1)g

60 370 7.2 0.00 1.22 0.00 1.43 0.07

61 370 7.2 0.08 1.22 0.00 1.46 0.07

62 370 7.2 0.12 1.32 0.00 1.60 0.07

63 370 7.2 0.16 1.42 0.00 1.62 0.08

64 370 7.2 0.32 1.49 0.00 1.71 0.08

65 370 7.2 0.30 1.42 0.00 1.68 0.08

66 400 7.2 0.00 1.23 0.00 1.42 0.07

67 400 7.2 0.08 1.23 0.00 1.46 0.07

68 400 7.2 0.12 1.33 0.00 1.58 0.07

69 400 7.2 0.16 1.43 0.00 1.62 0.08

70 400 7.2 0.31 1.49 0.00 1.67 0.08

71 400 7.2 0.30 1.43 0.00 1.67 0.08

72 430 7.2 0.00 1.23 0.00 1.42 0.07

73 430 7.2 0.08 1.23 0.00 1.47 0.07

74 430 7.2 0.12 1.33 0.00 1.56 0.07

75 430 7.2 0.30 1.49 0.00 1.65 0.08

76 460 7.5 0.00 1.22 0.37 1.56 0.06

77 460 7.2 0.00 1.24 0.00 1.44 0.07

78 460 7.2 0.07 1.24 0.00 1.48 0.07

79 460 7.2 0.11 1.33 0.00 1.53 0.07
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Table 2: Coefficients in bed load predictors

Predictor m n p

Meyer-Peter and Müller (1948) 8 0 1.5

Wilson (1966) 12 1.5 0

Fernandez Luque and van Beek (1976) 5.7 0 1.5

Ribberink (1998) 11 0 1.65

Soulsby and Damgaard (2005) 12 0.5 1

Kleinhans and Grasmeijer (2006) 1 0 1.5

0

z

No−flow bed location

Time−dependent bed location

Numerical bottom boundary

Numerical top boundary

Figure 1: Sketch of the numerical domain for the sheet flow model.
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Figure 2: Free-stream velocity (solid lines) and non-dimensional bed shear stress (dashed lines) for five cases from

table 1. From top to bottom: case 38, pure oscillatory flow; cases 3 and 52, sinusoidal wave plus current; case 20,

2nd-order Stokes wave; and case 46, 2nd-order Stokes wave and current.
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Figure 3: Phase lead of the bed shear stress with respect to the free stream velocity for all numerically simulated

cases (circles) and following the expression of Madsen (1994) (solid line).
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sediment stress gradient Rgc in the dashed line (see appendix for more details on the ratios). The transition between

bed load and suspended load occurs at the intersection of the two curves.
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Figure 5: Bed load transport rate comparison between the numerical sheet flow model results (solid line) and the

quasi-steady empirical formula of Soulsby and Damgaard (2005) (dashed line) for the five examples of figure 2.
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Figure 6: Net bed load transport rate comparison between numerical results using Amoudry et al. (2008) and Soulsby

and Damgaard (2005)’s formula. Circles: current and sinusoidal wave. Squares: 2nd-order Stokes waves. Diamonds:

2nd-order Stokes waves with superposed current. Dashed lines: factor two error.
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Figure 7: Bed load formula proportionality factor m as function of sediment diameter. The solid line represents

equation 4.
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Figure 8: Net bed load transport rate comparison between the sheet flow model numerical results and Soulsby and

Damgaard (2005)’s formula without equation 4 (black) and with equation 4 (red).
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Figure 9: Examples of intra-wave reference concentration for the numerical results (solid line) and for van Rijn (2007)

formula (dashed lines) for the five examples of figure 2.
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Figure 10: Examples of intra-wave reference concentration for the numerical results (solid line) and for Zyserman and

Fredsoe (1994) formula (dashed lines) for the five examples of figure 2.
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Figure 11: Wave-averaged reference concentration. a) Comparison between the numerical results (symbols with the

same colour legend as in figure 6) and Zyserman and Fredsoe (1994) formula (solid line), the dashed line shows

c = 0.2. b) Comparison between the numerical results and van Rijn (2007) formula (solid lines, different colours

corresponding to different sediment diameters increasing to the left). The dashed line corresponds to the best linear

fit to the numerical data (equation 11).
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Figure 12: Examples of intra-wave net vertical sediment flux two diameters above the undisturbed bed: numerical

results (circles) and parameterization with equation 12 (solid line).
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Figure 13: Phase lag of the vertical sediment flux with respect to the near-bed acceleration, numerical results (circles)

and equation 13 (solid line).

31


