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PREFACE

There are many problems in hydrology that may be solved by multiple
regression procedures. This type of analysis may be used in flood and low flow
studies, for example, and in catchment modelling. Rainfall-runoff equations
derived by using multiple regression procedures have been developed and used
for a variety of purposes such as flow projection in times of drought and for the
estimation of past flows from weather data.

As no single work of reference dealt comprehensively with the use of
multiple regression in hydrology, the Department of the Environment’s
Central Water Planning Unit, in June 1975, commissioned one from MrR. L.
Holder of the Department of Mathematical Statistics, Birmingham
University. Following the transfer of certain functions and responsibilities of
the DoE Unit to the Natural Environment Research Council’s Institute of
Hydrology, a revised and updated book incorporating more substantial
examples was prepared with the assistance of the staff of the Institute.

Because of the apparent generality of the method of relating one variabletoa
set of other variables, multiple regression is probably the most frequently
used—and indeed misused—statistical tool. Undoubtedly, the technique is
potentially very useful and it is currently the subject of much theoretical
research by mathematical statisticians; but, as with any statistical procedure, it
is crucially important to understand the basis, assumptions and limitations of
the technique. Computer packages have taken the drudgery out of regression
analysis and some allow great flexibility in the type of analysis conducted. As
well as instructing the reader on the basic techniques, this book aims to educate
readers to extend their use of regression beyond the standard procedures.

I am very pleased therefore that it has been possible for this Institute to
publish Mr Holder's most useful addition to the hydrological literature.

J. 8. McCulloch
Director, Institute of Hydrology
April, 1985
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Chapter 1

SIMPLE LINEAR REGRESSION

1.1 Introduction

1.1.1 A problem in linear regression analysis

A study of the relationship between rainfall and run-off in a particular area
may, amongst other things, have led the investigator to keep records of the
annual rainfall and the annual run-off over a period of several years. An
example of such records, taken from the Alwen catchment, Lewis (1957}, is
given in Table 1. '

Table] Monthly rainfall and run-off for the Alwen Catchment, North Wales 1912-1915 (mm)

Year Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

1912 rainfall 76 87 164 23 41 119 110 189 40 139 134 192
rup-off 75 66 112 25 5 18 22 126 22 64 102 16l
1913 cainfall 115 74 196 140 80 96 45 67 92 126 140 | 19
run-off 115 &1 142 104 60 33 7 7 31 72 131 %4
1914 cainfall 162 156 168 53 100 96 127 83 44 68 146 260
run-off 125 148 132 43 44 36 31 37 24 29 114 246
1915 rainfall 185 178 42 78 67 16 138 107 44 64 112 245
run-off 166 161 43 34 22 3 3 39 8 22 55 240

This table gives the precise details, within recording accuracy, of rainfall and’
run-offin the Alwen catchment between 1912 and 1915 and, as such, is the most
complete statistical representation of the investigator’s findings. However,
some alternative statistical representation of these facts may be necessary in
order to achieve some specific objective. The investigator may wish to:

(a) Summarise his data in terms of just a few pertinent numbers.

(b) Decide whether rainfall and run-off influence each other.

(c) Predict some future run-ofl which might be expected from a certain
annual rainfall.



MULTIPLE REGRESSION IN HYDROLOGY

(d) Predict the rainfall that would be necessary to produce a certain run-off.

(¢) Decide whether certain of the readingsin the table are exceptionalor are
not of the same pattern or trend as the others.

(f) Build or complete some mathematical model relating rainfall and run-
off.

{g) Make some comparison between the readings given in Table 1 and
similar readings obtained from another area.

To achieve any of these objectives, the first step could be to draw a graph of
annual or monthly rainfall against run-off.

Careful examination of this graph and judicious use of a ruler, a fiexible
curve and his own experience would help to give the investigator an answer to
objectives (a), (b), (c), (d), (¢) and (g). Linear regression analysis would also be
helpful. However, in suggesting this further technique, it is not our intention to
denigrate graphical and visual methods; indeed, it is hoped that the reader will
realise that the two are complementary. Allowance for other factors, such as
evaporation or month to month variation, would improve the accuracy of the
relationship shown in Figure 1. More complex relationships of this type are
discussed in Chapter 2.

250 7

200 +

Run-off {mmj}

100+

T T

4] 50 160 1%0 200 250
Rainfall {mm)
Fig. 1. Alwen catchment rainfall and run-off 1912-15,
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1.1.2  Assumptions made in linear regression

Simple linear regression may be applied to problemsin which a record has been
made of the values of two variables, referred to as y, the dependent variable,
and x, the independent variable. It is assumed that, for any such record, the
mathematical model

y=a+bx+e )

where @ and b are constants and e is a variable, describes the relationship
between the yreading and the x reading. By temporarily ignoring the term e, we
see that a straight line (linear) relationship is assumed between y and x, with q,
the intercept, and b, the slope of the graph of y plotted against x. However, if
our model only allowed for readings of y and x which fell exactly on a straight
line, it would be of little practical value. Inclusion of the variable e allows
readings of y and x to deviate from a straight line, but assumptions are made
about e so as to force these deviations to have a particular pattern. If we
imagine being able to take many readings all giving the same value of x. then
some y values will be greater then a + bx and some less, i.e. some values of e
will be positive and some negative. Most of the assumptions made in linear
regression can be stated in terms of the values of e. We will assume that the
arithmetic mean of the values of eis zero. We will also assume that the variance
of these values of e is always the same wherever the value of x happens to fall.
At a later stage, we will also need to assume that these values of e form a normal
distribution.

Figure 2 indicates the type of graph one would expect if it were possible to
record many values of y all with the same x value.

In practice, we will frequently have only one value of y to plot at one x
position. Consequently, one of the problems we will have to consider is how to
justify the above assumptions when the readings are not available in the ideal
form as shown in Figure 2.

An alternative interpretation of the assumptions is as follows. If we are able
to fix a value of x, then the value of y we record should be a + bx. However, due

b

y=a +bx

X

Fig. 2. Distribution of values about the regression line.
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to errors, inaccuracies, uncontrollable or inexplicable variations, the reading
of y that we make is @ + bx + e, e representing the error in measurement. Then,
on average, such errors should be zero, i.e. there is no consistent bias in our
readings as a result of errors made. Furthermore, all readings should be made
with equal precision, i.c. a given size error is equally likely to be made at any
value of x. Finally, the errors of measurement should form a normal
distribution.

There is one further assumption to add to both of these explanations and this
is that all errors (values of e) are assumed to be independent, i.e. the magnitude
of the error in one reading does not influence the magnitude of the error in
another reading.

1.1.3  Interpretation of the assumptions

Let us consider the direct application of linear regression to the data of Table 1.
As may be deduced from their titles, and certainly from equation (1), the
variables y and x are treated differently in linear regression; they are not
interchangeable. Thus, some thought must be given to which variable we call y
and which we call x. Ideally, we would have one variable subject to errors and
the other fixed, controlled or error free; the former would be yand the latter x.

However, with rainfall and run-off as potential y and x variables, the choice
is by no means straightforward. Indeed, considering the measurement of these
two variables, we would probably have to conclude that both were subject to
errors; consequently, the linear regression model (1), which appears to
attribute all error to one variable, is not appropriate. Models which allow both
variables to be subject to error will be discussed later but for now, let us
consider what circumstances might lead us to use linear regression for
rainfall/run-off problems.

Asis so frequently the case, it is our objective, together with some knowledge
of the physical process being studied, which determines the form of the model.
If we wish to predict the likely annual run-off from an annual rainfall of R, then
we will need to assume that R is fixed and predict what we regard as an
uncertain quantity, run-off. Thus, there is some intuitive support for assuming
that the available rainfall readings are fixed and, together with some statistical
reasoning, this leads us to conclude that rainfall should be treated as the
independent variable x. In general, we should usually aim at taking the
predicted variable to be y and the predictor to be x. In this particular example,
there is a further reason for taking rainfall as the x variable in that rainfall is, to
some extent, causal of run-off and hence our model may be interpreted as being
of the form

output = some function of input + error

Having decided upon an x and y, we next have to consider our assumptions
about the errors or inexplicable variations. Imagine drawing the best possible
line to describe the points in Figure 1, as illustrated in Figure 3; the vertical
displacement of each point from this straight line represents the error or
inexplicable variation for that reading.

If the first assumption of errors averaging to zero is true, then this will
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200
For the sake of clarity the vertical displacement
of every point has not be drawn
*
* *
150 -
3
E
= 1004
)
c
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@
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*
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o 50 100 150 200

Rainfall (mm)

Fig. 3. Error or inexplicable variation in y readings.

usually lead to a collection of displacements which appear to have no pattern to
them and few particularly outstanding values.

Similarly, reference to Figure 3 will help in assessing the second assumption,
that of equal precision or error variance. This would be reflected in the graph by
a similar spread of deviations about the line over the whole range of x values. If,
on the other hand, points tend to group close to the line in some regions of x
and are widely dispersed to either side of the line in other regions of x, then this
might suggest that the precision of results varies.

The assumption that the errors form a normal distribution is not essential
for all the steps in a linear regression analysis. For instance, a best fitting
straight line may be obtained, and some approximate statement made about
the accuracy of that line, without this assumption. However, if such an
assumption can be made or arranged (see Section 3.3) a far more complete and
satisfactory analysis can be accomplished. As in the case of the two previous
assumptions, it is usually necessary to refer to the outcome of a linear
regression analysis in order to assess the validity of this assumption (see Section
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4.3). However, some knowledge of the distribution of hydrological data will be
of value in detecting likely problem cases (see Section 3.2).

The assumption of independence is usually violated when there is some carry
over from one reading to the next, frequently when such readings come as a
sequence in time. An example might be where two run-off measurements are
made over time periods which overlap or which are both affected by the same
heavy rainfall or drought. Another example is where one reading contributes to
the next in some way, as might happen with river flow measurements taken at
stations which are close together. Problems which are more appropriately
modelled as time series are considered later. However, as with the normality
assumption, the choice of a best fitting straight line is not necessarily dependent
on this assumption of independence being satisfied.

1.1.4 What can be achieved by using linear regression analysis?

So far, it has been suggested that linear regression analysis might help in
solving problems (a) to (g) of subsection 1.1.1 and that some ‘best fitting’
straight line might also appear. Before plunging into a detailed description of
how we might give an answer to these objectives, it would be as well to examine
more specifically what it is possible to achieve using linear regression analysis.

First of all, let us suppose that the assumptions mentioned earlier are
satisfied, that we have chosen a yand an x, and that we have a set of data similar
to that of Table 1, namely pairs of values of y and x. We may estimate aand b in
equation (1), together with their standard errors, or, alternatively, we may
derive confidence intervals for a and b or for the line a + bx. This will give an
answer to problem (a), some idea of (b), and possibly an appropriate answer
to {f).

Having estimated @ and b, we may use these estimates to predict a value of y
corresponding to a particular x (and vice versa) by calculating

Y=d+bx )

where ¥, 4 and b are estimates of y, a and b respectively. Alternatively, we may
derive a confidence interval for this unknown value of y. This will help to
answer (c) or (d).

We may carry out tests of significance on b and/or on a in order to examine
simplifications of equation (1). For example, we could test ¢ =0, oreven b = 0.
If we have several sets of similar data, then we may estimate @ and b for each set
and carry out tests on the similarity of the different as and bs. The first tests
might help with problem (b) or (f) and the others with problem (g).

If, for each value of x recorded in our data, we estimate the corresponding
value of y using equation (2) with our estimates of @ and b, then the difference
between the recorded and the estimated value of y is usually referred to as the
residual. The set of residuals calculated from all the data contains useful
information. Patterns in these residuals, when plotted against their associated
x values, may indicate a poor model and may suggest the direction in which
improvements might be made. The residuals may also be used to examine the
validity of the assumptions mentioned in subsection 1.1.2. A residual which
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was markedly different from the others would be an indication to the solution
of problem (e).

1.2 The Basic Method

1.2.1 Fitting a straight line

The basic data for this section will consist of pairs of values of y and x where the
identity of y and x has been established as already outlined. These pairs of
values will be denoted by (¥, x,), (¥, X,), ..., (¥, X,) and model (1) will then
become

y¥i=a+bx;+e (fori=1,2,3,...,m 3
This is illustrated in Figure 4 for three pairs of points.

¥

€3
Aaﬂ::

NI

ft———. 20—

L3z

Fig. 4. Regression line and associated data.

The exact position of the line y =a + bx is unknown and our problem is to
make an intelligent guess at its position, given the points on the graph. There
are many proposals as to how this intelligent guess should be made. We will
examine one method in detail, namely least squares estimation, but we will also
consider some alternatives.

The objective of least squares estimation is to choose values of the unknowns
s0 as (0 minimise

n

ef = z (y;—a—bx)?

i=1 i=1

§?=

)=



MULTIPLE REGRESSION IN HYDROLOGY

i.e. the total vertical discrepancy of the points from the line (regardless of sign)
should be as small as possible.

Solving 65%/da = 0 and 65%/db = 0 will give the values of a and b, denoted by
d and b, which minimise S2. Hence, solving the equations

-2y (y—d—bx)=0 and -2 (y;—d—bx)x;=0 (4)
i=1

i=1

will give the estimates

l6=f:1 i=1 =1 __'=1 (5)

and

= (fi yi) /n — B(i; x,-) / n=y—bx (6)

The first expression in equation (5) is the one usually recommended for
calculation because it preserves accuracy. However, this point is only valid
provided full accuracy can be retained throughout the calculation. If there are
a large number of data points and y and x are relatively large values, then this
may lead to )7, yx;and (37_, x,)(3_, »,)/n both being large and similar;
hence, their difference may be seriously affected by the roundoff errors
generated when calculating either of the large expressions. In such
circumstances, the second expression in equation (5) is more satisfactory.
Roundofl problems usually arise where a digital computer has been used for
calculation and, under these circumstances, there is little extra hardship
involved in using the alternative expression.

As sum of squares and cross products appear frequently in regression
calculations, let us define the following terms:

1 (x,— %)= Z X3 —(‘; x.)z/n
=[_=i1 ~-t= Z i (Z ,)Z/n
S, :i = D=7) = . xepe— (z x)(z y,.) /n

i=1

where

M:

S =

XX

i

Thus, in this new notation, equation (5) becomes b = AT
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1.2.2  Estimates and their precision

The most we can hope to get from data which do not exactly form a straight line
is estimates of @ and b; if we add some new data, then almost certainly our
estimates will change. By making some assumption about the variance of the
variable e (see subsection 1.1.3), we can derive the variances of ¢ and 5. In
particular, if we assume that the variance of e (denoted by Var () is 62, thén it
follows that

¢ i x?
Var (4) :rz;—l (7)

2

XX

and
2

Var () = (8)
SXX
All the quantities in expressions (7) and (8), except for ¢?, may be calculated
from the data. Since o2 is the variance of the variable ¢, it is natural to use the
residuals, namely

é=y,—d—bx, (fori=1,2,...,n) 9)

in order to estimate ¢”. We know from equations (4) that Y 7_ é,=0 and,
hence, that the arithmetic mean of the residuals is zero.
Consequently, if we use the sum of squares about the mean of the residuals as
the basis of our estimate of ¢?, then that sum of squares will just be
n 52
I éf. ‘
The appropriate divisoris n — 2, two degrees of freedom having been ‘lost’ by
estimating a and b. Hence, our estimate of ¢* will be
1 Z &= S (yi—d—bx)?
n—-24= "' n=-224=5""' !
(10)

_ 1 (Sy)”
_n——2(S”_ S )

xx

o’ =

Which expression in equation (10) is chosen for calculating 62 depends on two
factors. If the residuals are to be calculated in any case, then it is obviously
sensible to use the first expression. If they are not, then the last expression may
be preferable. In evaluating the component expressions S, S, and S, , the
remarks which were made at the end of subsection 1.2.1, concerning numerical
accuracy apply also in this context.

We are now able to report estimates of a and b together with estimated

standard errors (\/estimated variance) for those estimates. An alternative
summary would be to provide confidence intervals for a and b. However, as
these are probabilistic statements, they require some assumptions about the
probability distribution of the variable e. The usual assumption is that e is a
normal random variable; we have already assumed that its mean is zero and
that its variance is ¢>. Shorthand notation for these assumptions is

e~ N(0, o).
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If, in our model (3), we assume that e, ~ N(0, ¢%) (fori=1,2,...,n)and that
e,.e,,...,e, are independent (see subsection 1.1.2), then

and

In addition, Y7_, (y; — d — bx;)%, usually called the residual (or error) sum of
squares, follows o?32_, (see footnote). This in turn means that

(11)
and
b—b
= ~t,_,y (12)
S

If t(n, p) is defined by p = [“"Pf(z, ) dt,, where f{(1,) is the probability density
function of the ¢ random variable with » degrees of freedom, then the
100(1 — &) % confidence interval for a is

G+t(n—=2,1-0/2)

and the 100(1 — a} %, confidence interval for b is

- &2
b+i1n—2,1—0/2) 5

1.2.3 Significance tests
Equations (11) and (12) may also be used to test the validity of appropriate
hypotheses about a and b. For instance, with the Aiwen data, we might ask

whether a hypothesis of @ =0 is valid. If it is valid, then this would imply that
the model should be

run-off = b x rainfall 4 error

Each of the three random variables 2, 1, and F, .« are special functions of Normal random
variables which are frequently encountered in practice. The suffices are referred to as degrees of
freedom and relate to the number of independent normal random variables involved in the
function. Most texts on mathematical statistics give definitions of these random variables and
derive their probability density functions.
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so that, except for error, we would expect zero run-off when there is zero
rainfalil.
If our hypothesis @ =0 is true, then equation (11) becomes

Hence, if we accept the hypothesis @ =0 whenever

L]]<t(n—2,1—“/2)

and reject the hypothesis otherwise, then this will give us a 100a % significance
test for this hypothesis.

We might also consider whether the hypothesis & =0 is valid. If it is valid,
then this would give a model

run-off =constant + error

which would imply that rainfall does not affect run-off.
If the hypothesis & =0 is true, then equation (12) becomes

(4]
6'2 -~ [rl—Z

S

XX

Hence, if we accept the hypothesis b =0 whenever

M<t(n—2, I —a/2)
/éz

Sxx
and reject the hypothesis otherwise, then this will give a 100a % significance test
for this hypothesis.

Clearly, both of these test procedures are equivalent to accepting the
respective hypotheses whenever the points =0 or b =0 fall within the
100(1 — a) % confidence intervals constructed for a and b.

Another hypothesis on 4 which may be of interest, although not to the Alwen
data example, is the hypothesis &=1. If we are testing a new measuring
instrument and we are taking readings () on items where the exact result (x) is
known, then fitting a straight line y = a + bx will allow us to test for correct

zeroing of the instrument (¢ =0) and correct calibration (b=1}. This, of
course, assumes that a linear relationship is appropriate.




12 MULTIPLE REGRESSION IN HYDROLOGY
The appropriate test procedure would be to accept the hypothesis b =1
whenever
b—1|

2

< i(n—2,1—/2)
o
S

and to reject the hypothesis otherwise. Calibration experiments are discussed
again later.

1.2.4 Prediction

One of the purposes of fitting a straight line to a set of data might be either to
interpolate or to extrapolate. Having carried out a regression of y on x, it is
usual to want to predict a value of y corresponding to a known value of x. The
obvious predictor is

y“_—

Var (y'\) - O'Zlil + (x__'f.)mi:l

+ bx

[~ 59

which has variance

n Sy

However, we must be careful to consider just what this estimate is estimating
and, in particular, what its variance implies. If we were able to measure values
of y repeatedly at this known value of x, then the arithmetic mean of these ys
would tend to some fixed number, confusingly called the mean value of y. It is
this fixed number which we are estimating and the variance represents the
errors of estimation which we will make as a result of using only estimates of a
and 5. Our fixed number would be a + bx which we could calculate exactly if
only we knew « and b.

However, we supposed in model (1) that any single reading of y was made up
of a + bx + e, each reading showing some unpredictable error e from its ideal
value a + bx (the one we have discussed in the previous paragraph). Our
estimate of any single reading will be @ + bx (as our estimate of ¢ must be zero)

but its variance will be
I (x—x)?
2 P LX)
o+ G [n + S

Xx

the first component for the error of the reading and the second component for
the error of prediction.

An alternative presentation of this information is to give confidence intervals
for a + bx and a + bx + e, the former being for the mean value of y and the
latter for a single reading of y. They are

é+5xit(n—2,1—0(/2)\/6‘2(%+()C.S,_—i)) (13)

XX




SIMPLE LINEAR REGRESSION

and

S

xx

d+5xit(n—2,1—a/2)\/62(1+%+(x_f)2) (14)

respectively, for 100(1 — «) % confidence intervals.

Figures 5 and 6 show the confidence intervals (13) and (14) plotted on the
same graph as the regression line, y = & + bx; these graphs give a more obvious
impression of confidence interval (13) representing the precision of the
regression line and confidence interval (14) representing the interval which
gives some limits to the readings of y.

¥

Fig. 5. Confidence interval for the mean value of y.

Figure 5 shows the loci of the confidence limits for the mean value of y.
Therefore, for a fixed value of x, there is a probability of (1 — ) of the interval
defined by (13) containing the mean value of y. The whole region illustrated in
Figure 5 should not be confused with the confidence region for the line *
¥ =a+ bx,i.e. the region such that there is an overall probability of (1 — &) of it
containing y = a + bx.

To find the confidence region for y =a + bx, replace t(n—2,1 — 2/2) in
equation (13) by [F(2,n — 2,1 — )]'/?, where 1 —a = [§*"" ! "¥g(F)dFand
g(F) is the probability density function of the F random variable with 2 and
n — 2 degrees of freedom. Tables of F(n,,n,,1 — a) are widely available (for
instance, Table 18 of Biometrika Tables for Statisticians, Vol. 1, Pearson and
Hartley, 1972).

ymashx

Fig. 6. Confidence or prediction interval for a single reading of y.
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If, because of the nature of the variables x and y, it is necessary to predict a
value of x from an observed value of y, then the natural estimate would be

. _y—d

X=—p3

b
A 100(1 — a} % confidence interval for the correct value of x would be

L7 L I 1 (x—x)? 1 262 7|42
A (x—x) S_u ifﬂ'l:b (I+E+T — 1+H Sxx

X+ =
B t*¢?
S

xx

where t =1t(n— 2,1 — o/2).

1.3 Extensions to the Basic Method

1.3.1 Repeated observations

Let usconsider the situation where, instead of a single value of y being recorded
for each value of x, several independent observations of y are available.
Alternatively, we could consider that, by chance, there are several values of y all
with the same value of x. A notation to cope with this situation is outlined
below.

Values of x X, X, X x,
Y1 Va1 y.u ; yf'l

Values of y yE”’ yE“- : ’
Yir, Yar, Y3y Yor,

Number of y values r. rs r ,,"_

Such a situation might arise when x is a variable over which we have some
control or choice and we are able to repeatedly observe values of y under
identical conditions.

Our model might be

yij=a+bx;+e; (for j=1,2,...,r, and i=1,2,...,0) (13)

I

which is not very different from model (3).
Let us define the following terms:

n n n 2
Sk = Z ”i(xi_f)2= E rixiz_(z "ixr) /N
i=1 i=1 i

n

8= -G, —F )= % 3 y"f‘(,-i $ y)(z x) /N

i=1 i=1 i=1

Sfyzi i(yij_f‘.)2=_i iyfj—(i i}’u /N

i=1 j=1 i=1 j=1
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where
O T G R

N =} r,=total number of y readings
=1

and

Then, the least squares estimates of @ and b are

ci:_ﬁ”—bf {16)
and

- SK

b= a7

The estimate of slope, b, is similar to that which would have come from fittin ga
straight line to the pairs of points (¥, , x;) except that each point is weighted
according to the number of y readings taken.

The variances of the estimates are

o Y rix}
sy =1
Var (d) —stx (18)
and
o~ 0'2
Var(b)zS,T (19

When considering a possible estimate of &2, it is worth noticing the extra
potential offered by data in this form. An estimate similar to (10) would be

1 g -
L (. —a—bx) (20)

n—2 i=1

However, an alternative estimate is available by considering the variability of
all the y values which have been recorded for one x value. For instance,

1 &
2 =i

l’f—l Jj=1

would give an estimate of ¢ from y values recorded with x = x,. Using similar
estimates of ¢ from y values recorded with other x values, and combining
these into a single expression, gives an estimate

LS 3 g5 @1

~2
g°- =
N—n =y /5

We might now use the estimate (20) as a measure of how well the linear model
fitted the data. Formally, this may be achieved by modifying the model (15) to

yy=a+bx;+ L +e; (forj=1,2,...,r;, and i=1,2,...,n) (22)

1
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where L,, L,,...,L, are unknown parameters which allow for consistent
deviations from a4+ bx; in the means p, . If we find the hypothesis
Li=L,=...=L, =0 to be valid, then this implies that a linear model
Yy =a+ bx, +e; is adequate for relating y and x. Conversely, if we find the
hypothesis to be unreasonable, then this implies that the linear model does not
adequately explain the relationship between y and x.

An analysis of variance table provides a neat summary of the information
necessary to test this hypothesis, as well as the hypothesis b =0.

Source Sum of squares Degrees of  Mean sguare
Sfreedom
Regression h2s® 1 h2S®
posishrr D L S T
Residual i rZ %) N-n 20
i=1 j=1
Total SR N—1

The column mean square has been derived from (sum of squares/degrees of freedom).

In an analysis of variance table, the total variation in the data (represented by
the total sum of squares) is partitioned into a series of meaningful independent
quantities. In this case,

Total _ Variation explained | Vanation explained + Error
variation by the regression line byL,,L,,....L, variation

or, in other words,

Systematic departure
+ from regression line +
sum of squares

Residual sum
of squares

Total sum _ Regression sum
of squares =~ of squares
In most properly constructed analysis of variance tables, the ratio

Mean square due to X
Residual mean square

will follow an F distribution, with degrees of freedom equal to those of the
numerator and those of the denominator respectively, whenever X has no real
effect, or role, in explaining the total variation.

Thus,

Regression mean square
Residual mean square

~

1. N—n

when no variation has been explained by the regression, i.e. when the
hypothesis £ =0 is true.
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Similarly,

Systematic departure - - - mean square
Residual mean square

~ Fn*Z,N*n

when there is no systematic departure from the regression line, i.e. when the
hypothesis L, =L, =--- =L, =01s true.

Hence, a 100a 9, significance test would lead us to accept the hypothesis
b =0 whenever

Regression mean square
Residual mean square

<F(IL,N—n1-a)
Similarly, a 10029, significance test would lead us to accept the hypothesis
L, =L,=-..=L, =0 whenever

Systematic departure - - - mean square .
< Fn-2,N—n,1—-0u)

Residual mean square

The 100(1 — &) %, confidence intervals for ¢ and b are

G+ N —n,1—a2)

and
b+uN—n1—-0/2) |—
respectively, where o2 is given in equation (21).

1.3.2 Fitting and comparing several straight lines

If several sets of rainfall-run-off data have been collected from different sites
and a linear model has proved to give a satisfactory explanation of the data,
then it may prove useful to compare the estimates of @ and b calculated from
the data from the different sites. Some interpretation may be attached to @ and
b; for instance, if we interpret ¢ as the run-oft from zero rainfall and & as the
proportion of rainfall appearing as run-off, then subsequent comparisons of
the estimates of @ and b will give some idea of the similarity of the sites in these
two features.

Let us assume that there are » sites from which data have been collected and
that, from site #, the data consist of r; pairs of readings of y and x which are
denoted by (y;;, x;;) (forj=1,2,..., ). It will usually be sensible to fit separate
straight lines to the data from each site. For site i, the model equivalent to (3)
would be

yi=a;+bx;+e; (23)

Estimates of a; and b, would be derived by applying the basic method
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described in Section 1.2 to the data from each site in turn. Using the above
notation, this would give estimates

A

d; =y, — b,

1

5,- = (21 (P — ¥ Mxiy— fi.))/ '21 (xy— ’ff-)z)

i and

iJl

Similarly, the variance of the variable e for site i, denoted by ¢, would be
estimated by

ﬂl

and

where

z
e
-

. 1
0-12 =m Z (ylj blxu)l

Thus, we would be able to imagine the data from each site having been
Condensed into three numbers, denoted by 4, b and 62. In a comparison of
sites, it would be sensible, from the statlstlcal point of view, to start by
comparing the values of 6f from each of the sites.

This may be achieved by testing the hypothesis 67 = 63 = - = ¢2. One test
statistic for this is

Z (r - 2)0- n
M =(N=2n)log,| W > (r;—2)log, 67
. i=1

where

N=3 r
i=1
The distribution of M is approximated by y2_, whenever g7 =63 =... = 62,
Thus, a 10029 significance test would be to accept this hypothesis whenever

M<y}(n—1,1—a)

where 1 — o —j" oL ma(y2 Ydy?_ | and f(y>_,) is the probability density
function of ?_,. Tables 7 and 8 of Biometrika Tables for Statisticians, Vol. ]
(Pearson & Hartley (1972)) may be used to give values of y*(n — 1,1 — «) and
improvements to the approximation of the distribution of M are given in the
text accompanying Table 32. This test assumes that the variable e follows a
normal distribution and, unfortunately, a significant value of M may indicate
non-normality rather than heterogeneity of variance.

However, if the hypothesis 62 = ¢2 = .. . = 62 is acceptable, then this implies
that run-off readings at a fixed rainfall level show similar variability within each
of the different sites and/or that the linear model is equally successful at
explaining the relationship between rainfall and run-off within,each of the
different sites.
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Being able to accept this hypothesis leads to simpler and more meaningful
comparisons between the other statistics. The appropriate tests are most easily
displayed in an analysis of variance table but, in order to avoid cumbersome
algebraic expressions, it will be necessary to introduce some new notation. Let
us define the following terms:

Si= % (x,— %)
i=1

Sy = z (yij_};i.)z
i=1

S.!xy = Z (yij_ﬁi.)(xij_'fi.)
i=1

[Hence, b, =S: /Si. ]

Z Z (xu_x )2

i=1j=1

Z Z(y,, v.)?

i=1j=1

Z 2 (xy;— % Wy;—r.)

i=1j=1
bo = S.(;)'/Sxx
where

IIM;;

g and g

The first four quantities are calculated using data from just a single site.
However, although the remaining expressions are of a similar type to the first
four, they involve data from all of the sites. They are calculated by ignoring the
distinction of sites and using all of the data from all sites to give an ‘overall’
quantity (o = overall).

Finally, let us define

IIM;

i
N

S5 = Z

i=1

2 Sk

5, =
i=1

Sy = .;1 S;y

b, =S:/S:,

These four expressions are of a similar type to S¢,, Sy, etc., in that they involve
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data from all of the sites. However, they do not ignore the identity of the sites
but give a combined quantity which allows certain differences that might exist
between the sites to be taken into account (¢ = combined).

If we were able to conclude that the hypothesis b, =b,=-.. =5, was
acceptable, then 5_ would represent a sensible combmed estimate of the
common slope. However. if. in addition. we were able to conclude that the
hypothesis a, =a, = -+ = a, was acceptable, then b would be a more sensible
combined estimate of the common slope.

Source Sum of squares Degrees of Mean square
freedom

Qverall b, Sf,.
regression

Difference in (S5, — boso,) — (S5, — 8.55) (=

Sum of squares )
positions

Degrees of freedom

Differences in
slopes i

Residual Z b,SL, N-12n

bSi, —b.5:

My

M:

1

Total 59, N—1

A similar procedure may be applied to this analysis of variance table as to the
previous one. However, it is preferable to carry out the tests in the following
order:
for 100x %, significance tests

‘1. accept the hypothesis b, = b, =-.. = b, whenever
Difference in slopes mean square
Residual mean square

<Frn—1,N-2n,1—0a)

2. if the hypothesis b, = b, =-.- = b, has been accepted, then accept the
hypothesis @, =a, = - -- = a, whenever

Difference in positions mean square
Residual mean square

< F(n—1,N=2n1—0q)

3. if both hypotheses b, =b, =---=b,and a, =a, =--- =aq, have been
accepted, then accept that there is no linear association between y and x
whenever

Overall regression mean square
Residual mean square

<F(I,N=2n1—q)

For more complex comparisons, such as concurrency of regression lines, the
reader is referred to a more advanced text on regression analysis, such as
Williams (1959) or Seber (1977).
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1.3.3 Observations with unequal precision

One of the assumptions mentioned in subsection 1.1.2 was that all of the y
values should be measured with equal precision, i.e. the fluctuation or
variability in each y value should be the same. This will not always be true for
hydrological data and methods for detecting whether this is the case, which use
the data only, are given in Section 4.3.

By considering the type of data being recorded, or by using the results of
previous studies, it may be possible to relate the variance of a y value to the y
value itself, If it is possible, then the problem of unequal precision may be
overcome by taking some transformation of the y values as described in Section
3.3.

Occasionally, the variances of the y values are known exactly. This will not
usually happen when, for instance, y is run-off and x is rainfall. However, it
may occur when the ys are some statistics such as the slopes of a regression line
calculated on separate sets of data which are being related to some feature x
measured on each of the sets of data.

Our information will then consist of the pairs of points (y,,x,),. .., (¥m X,,)
together with the » variances of the y values, 67,63, ...,07. The estimate in
equation (5) will still be an unbiased estimate of the slope of the regression
line. However, under these new assumptions, its variance will be
(35, o x; — X)*)/(S,,)* and this is larger than the variance of an alternative
estimator,

h="x (24)

where S, and S}, are defined as follows:

n

Ste= 2, wilx,~%)°

i=]
n

Sg= Z wilx; — X)(y; — ¥)

i=1

where

The corresponding estimator of a is
d=y—bx

The variances of these new estimators are

- 1
Var (b) =~
ar(b) 5
and

Var (@) =

1=
E
s

]
-
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The 100(1 — &) %, confidence intervals for a and b would be

b + Z(2/2) \/;7
1

)EZ

d+Z(%2) [ Tow

and

where

(The use of the normal distribution rather than the ¢ distribution in these
calculations is a direct consequence of knowing the variances of the y values.)

If repeated observations are available, and if the y readings associated with
each value of x; have variance o7, then the estimates in equations (16) and (17)
will become

d=y —bx

and

R
Sey
SwR

where ST and SF are defined as follows:

b=

n
S;vf = Z Wiri(xi“j)z
i=1

n

S:yR = Z wird ¥;, — 7, )Nx;— X)

i=1

Y= (121 yij)/ noves (,i Wiriﬁi‘)/ (-‘i Wiri)

The variances of ¢ and & will be

where

and
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The analysis of variance table will become

Source Sum of squares Degrees of freedom
Regression BrsuR 1
Systematic departure from .

R S owirdF - d— bx)? -2

regression line l.; virilds. = 4= bx) "
n r;
Residual YO¥ wilpy—r ) N—n
izt j=1
Total z Z “'i(}'i_,' - }-’ . )2 N—-1

i=1 j=1

The methods of testing and the conclusions are similar to those described in
subsection 1.2.1.

As will be seen in Section 3.3, it is a help to have repeated observations in a
study where it is suspected that the variance of y may not remain constant.
Initially, it is straightforward to test whether the variance of y has remained
constant and then, if it has not, it is possible to allow for this even when the
variances o2,0%,...,62 are unknown. Estimates of these variances may be
obtained from

. 1

2 _
6; =

i (,Vij_fi.)z

r—1,=

and these may be used in the preceding theory to give estimates of a and b.
However, inference from the confidence intervals and the analysis of variance
table should be made with caution, particularly when any of r,,#,,...,r, are
small.

Alternatively, plotting 62 against x;, may suggest that a relationship exists
between the variance of y and the variable x(e.g. 67 = ax;or 67 = ax?). If sucha
relationship were, for instance, 67 = ax;, then w; in equation (24) could be
replaced by 1/(xx;) giving

b= (Z 0= = x)) /(Z (x; ;lx)z)

Otherwise, a transformation of y might be appropriate and this technique is
described in Section 3.3.

1.4 Alternatives to Least Squares

1.4.1 Pencil and ruler

Anyone who attempts a regression analysis without plotting the data in some
form is asking for trouble. A plot of y against x on graph paper will reveal the
type of relationship that might exist between y and x. It will show whether y



24 MULTIPLE REGRESSION IN HYDROLOGY

increases or decreases with x and whether the relationship is linear or non-
linear. It will suggest how strong or weak the relationship might be and, indeed,
whether there is any relationship at all. It will show up points which are
obviously different from the majority and it will indicate the range of y and x
over which the relationship has been investigated.

Why then do we not finish the job, draw a line down the middle of the data
and forget about mathematical formulae and calculations? The main reasons
are that least squares is a method which is impartial, gives repeatable results
and provides a framework for inference. Furthermore, if you genuinely believe
that the linear regression model is the appropriate one, then least squares is the
method which will give the ‘best line’ (i.e. the most precise estimates of g and b).
Imagine being faced with a plot of points; there is frequently no natural
‘middle’, no person would have much confidence in someone else’s straight line,
and who, in any case, could quantify the precision of their straight line?

Unfortunately, least squares estimation will not necessarily give ‘the right
line’; it is, at best, an intelligent guess. It relies on certain assumptions and,
consequently. if these are not valid. then a critical assessment bv eve. which
discounts some points and gives greater weight to others, may give a straight
line which better suits the short term obijectives that the experimenter has in
mind. However, in the long term, he will probably benefit from investigating
the reasons why the least squares assumptions are invalid.

1.4.2 Robust and distribution free methods

Distribution free methods of estimation and testing occupy an intermediate
position between the pencil and ruler method and the method of least squares
estimation. They do not require as many assumptions as the least squares
method but, nevertheless, they do allow inference, as well as estimation, to be
made on the slope parameter 5. The assumptions usually required are that the
relationship between y and x is of the form described in equation (3) and that
the es are mutually independent and follow the same distribution.

A simple distribution free method of estimation is to take a pair of points,
say (¥, x;) and (y,, x), and to calculate the slope of the line joining these two
points, i.c. calculate

Yi— yj _ Eij

X;— X;
This is repeated for all n(n — 1)/2 pairs of points to give n(n — 1)/2 separate
slopes, by5,8,3,"...,b, , Then, the numbers b,,,5,5,...,b,_, , are ar-

ranged in increasing order of magnitude to give an ordered sequence denoted
by by, < by < by <+ < by, where N=n(n—1)/2. The median of this
set of numbers (b 4 )5, if Nisodd and (b, + bins2+1)) If Niseven)isthen
taken as the estimate of the slope parameter, 4.

To obtain an approximate 100(1 — )% confidence interval for b, the
following quantities are calculated:

nearest
r, = integer %(N— Z(of2) \/n(n — Il);?_n T 5))
1o ‘
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and
nearest
i —1
ro= integer _(N P R e, +5))
to 2 18

where Z(a/2) is defined in subsection 1.3.3.
The lower and upper limits of the 100(1 — a} % confidence interval for b are
takentobe b,,,,and b, , respectively. This approximate procedure is only valid

for a relatively large n. For an exact procedure, the reader is referred to
Hollander and Wolfe (1973), p. 207.

An alternative and ingenious method was developed by Daniels (1954). Itis
based on the fact that y = a + bx may be written in the forma = y — xband that
this equation may be regarded as a straight line relating ¢ and b, with slope —x
and intercept y. Thus, the set of readings {(y,,x),..., (v,,x,) may be
represented as n lines (@ =y, — x,b), (a =y, — x.b),. .., (a=y,— x,b)which,
in pictorial form, might look like Figure 7.

Ideally, we would expect ail the lines to intersect at one point which would
give us our estimates of @ and b. Of course, this would only occur if all the
original points (y,,x,),. .., (¥, X,) happened to fall exactly on a straight line.
We will usually have to choose some region in the ‘middle’ of the mass of
intersecting lines as containing our estimates of « and b.

As is illustrated in Figure 7, the picture will usually consist of a set of closed
regions (near the middle) and a set of open regions (around the edge). A
convenient score for any particular region is denoted by m and defined to be the
minimum number of lines which have to be crossed to escape from that region
into the nearest open region.

a

b

Fig. 7. Data points represented by a series of straight lines.
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Thus, if one region has the largest m, then it would seem reasonable to take g
and bas being in that region. However, as this does not give us unique values of
a and b and as it is not necessarily true that just one region will have the largest
m, it seems that a confidence interval is the natural outcome of this method of
estimation.

The 100(1 — &) 7 confidenceregion for aand bis made up of all those regions
for which m > m, where the value of m, is calculated as follows:
for a = 0.03,

nearest
mg ~ integer 1(n — 3.023,/n)
to

for & =10.01,
nearest

m, = integer 3(n — 3.562 /n)
to

These values of m,, are approximations for large #n. However, the former is not
misleading for n > 12 and the latter for n > 16 and, in both cases, when n is
below these limits, the exact value of myiszero. Alternatively, the exact value of
my may be calculated by solving

o

a=4z 3

r=40 275

for my where z = (n — ZmO)/\/E.

We may use this information to test hypotheses about a and 5. For instance,
in order to test the hypothesis a =0, b = I, we check whether the region in
which this point falls has been included in the 100(1 — o) % confidence interval.
If it has, then we accept the hypothesis thata =0, b = 1;if it has not, then we
reject the hypothesis. This will give a 100a % significance test.

A similar use may be made of the confidence interval which was calculated by
the previous method. For a 100«?, significance test, we should accept the
hypothesis on b whenever the hypothesized value of b is included in the
100(1 — o) % confidence interval.

e-(?.r:+:}2f2

1.4.3 Bayesian methods

In this section on Bayesian methods, it will be more convenient to take the
model relating y and x in the form

Yi=a+ﬂ(xi“f)+ei (25)
where

=

i

|-

X=

]
—

By comparing this model with model (3), it will be seen that @ =  — px and

& = f. Using the same notation as before, the least squares estimates of x and i3
are

Yi=y (26)

1

e

= |-

@ =

1]
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and
Sy
Sxx

and the variances of these estimates are Var (&) = 6/nand Var (B)=a¥S_. If
the a§sumptions described in subsection 1.1.2 are valid, then the estimates, o
and f, are independent.

Bayesian methods allow the use of information about o and § which is
additional to that provided by the data. Ideally, the information about «
should take the form of a distribution (called the prior distribution) which
would give the possible values of o and how likely they are to occur, IL.e.
the prior distribution for ¢ would be a summary of the state of knowledge
about o before the data in question were available. A similar distribution
should be available for f.

For example, we might assume that the prior distribution for « is Normal
with mean u, and variance 62,1.¢. our past experience suggests a tendency for a
to take values centred about u, with the variability about that point having the
characteristics of the Normal distribution. We might also assume that the prior
distribution for 8 is Normal, but with mean p; and variance aﬁ.

An objective of a Bayesian analysis is to update the prior distributions by
including the information on « and f contained in the data. The resulting
distribution, the ‘updated prior’, is called the posterior distribution and it
summarises all that is known about a and f, including the information
contained in the data.

In our example, where Normal prior distributions are assumed for o and f,
the posterior distributions are as follows:

B= (27)

N + 1
aﬁ —
0.2 “aai l
for a, N " T ' n I
@l e
~ 5 1
XX 4 -
ﬂaz ‘uﬂaﬁ |
for B, N S s I
—+t—= Tt

However, if we want to report only a single value for o, then it would be natural
to use the mean of the posterior distribution of a,

n
=t H

&
o o

Lo ]

-+

QN| ~
nqN| —-

This is called the Bayes estimator of a and it is clearly just the weighted mean of
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the least squares estimate of « and the prior mean of a. Similarly, the Bayes
estimator of f is

Complete prior ignorance about a parameter is usually expressed by using a
uniform prior distribution for that parameter. If uniform prior distributions
are assumed for « and B, then it follows that the posterior distribution for « is
N(&,a’/n) and the posterior distribution for 8 is N(B,6%/S ). '

Thus, if nothing is known about a and 8 prior to collecting the data, then the
Bayes estimators of x and g will correspond with the least squares estimates of o
and f.

The Bayesian method has the potential to incorporate into the estimation of
« and § all shades of opinion and knowledge which can be summarised in the
form of a prior distribution. However, it is more likely that our prior
knowledge will consist of several independent estimates of « and f which we
have previously derived from similar sets of data to our present set. Thus,
although we might be able to guess at the form of the distribution of these
estimates, we will probably be quite unable to describe it precisely and say that,
for instance, it is Normal with a particular mean and a particular variance.

Empirical Bayes methods have been derived specifically to cope with this
problem. Suppose that, on k—1 previous occasions in comparable
circumstances, data sets similar to the present one have been collected and,
from each data set, estimates of o and f have been derived. Denote these
estimates by d,,d,,...,d,_, and B, B, ... B_,. From the present data, we
may calculate least squares estimates of a, # and ¢ as given by (26), (27 and
(10). Denote these estimates by &,, f, and 62, respectively.

Define £, to be the larger of

where

Now, let
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Then, an empirical Bayes estimate of « is

52 [ 2 ((sin 4)/4))" +((sin B)/B,)°

ki

"

G+ i
[ h, Z ((sin 4;)/4,)

and an empirical Bayes estimate of f is

k
o2 2 ((sin C,)/C))* + ((sin D)/ D ))?

ﬁk + E_ = k
o hy ¥ (sin C))/C))?
j=t

For further details of this method, the reader is referred to the original paper by
Clemmer and Krutchkoff (1968).

1.4.4 Linear functional relationships

It has been emphasised that the linear regression model (1) essentially assumed
that error, random variation, etc. only affected the dependent variable, . A
more general, and perhaps more realistic, model might allow both yand xto be
random variables.

The functional relationship model assumes that a linear relationship would
exist between y and ¥, if ¥ and x could have been recorded in idealised
circumstances where no error was made.

Hence, the functional relationship model assumes

ideal y =a + b (ideal x)
However, the normal readings that we are able to take of y and x are related to
the idealised ones by

y reading =ideal y + ¢
and

x reading = ideal x + ¢

where ¢ and & represent the errors. Thus, for our » pairs of readings,

(¥, %), - - (¥ X,), there will be an associated set of (unknown) errors,
(e,,8,),. .., (e, d,), and our model will be
(r;—e)=a+blx,—d) (28)

We will also assume that both the e and the & errors are normally distributed
with variances o2 and o7, respectively. Consequently, we are assuming that all y
observations are made with equal precision, and likewise for the x
observations.

Therefore, if we are studying a situation in which both y and x are subject to
error and model (1) is inappropriate, then we might be obliged to use this
functional relationship model. At first sight, it might seem that it will always be



30 MULTIPLE REGRESSION IN HYDROLOGY

better to use this model, particularly as model (1) is just a special case of model
(28) with 6, =0. However, in order to estimate ¢ and & in model (28), more
information is required than that provided by the » pairs of readings alone.
The bare minimum of information required is knowledge of either (a) o2,
(b) 6 or (c) the ratio 4 =/,
In each case,

However, in case (a),

b=
s, (29)
in case (b),
b= __§£},’._ (30)

S — (n— l)ag

and, in case {c),

(S S iszx) + \/(S iy )‘2Sxx)2 + 4’12(Sx ’)2
3¥ »y ¥ (3 l)
25,,
If the numerator of equation (29) is negative, then take 5=0. If the

denominator of equation (30) is negative, then take § = c0.
In case (c), a 100(1 — a} % confidence interval for b is given by

Atan (tan -t (%) +isin 7! [2t(n—2,1- a/2)X])

b=

where
3 _ ZZ(SHS”. - (Sxy)z)

(n - 2)[(8” - j‘;"Sxx)z + 4;"2(Sxy)2]

In order to test the hypothesis b = b, (typically, b, might be 1 or 0), it is
probably easiest to compute the above confidence interval and then to check
whether b, is included in this interval. If it is, then we accept the hypothesis
b =b,; otherwise, we reject the hypothesis. This will provide a 100a%
significance test.

The estimates of b given above are the maximum likelihood estimates
appropriate for the three different situations. An alternative quick method of
estimation is as follows:

1. Plot (y,,x,), (¥, X3)s ., (¥ X,,).

2. Divide the x axis into three parts so that approximately 1/3 of the
observed x values fall in each part. (Ensure that the first and last group
contain an equal number which is as close to n/3 as possible.)

3. Compute the arithmetic means of the x and y values in the first group
(denoted by x, and y, respectively) and the third group (denoted by %,
and y,, respectively). A

4. Estimate b by b =(y; — y,)/(X; — x,) and estimate a by d =y — bx.




SIMPLE LINEAR REGRESSION a1

A 100(1 — %) % confidence interval for # may be formed although it requires
considerably more calculation. The following table illustrates the data after
being divided into three groups.

Group 1 Group 2 Group 3
x ¥ X ¥ X ¥
values values values values values values

RN Y X2 Y X3 Y3y
X2 Yiz ‘12 Yzz X3 Y3z

DATA : : : : : :
Xk Fik Xam Yim Xax Yk

Arithmetic mean X, ¥ X, 7, X ¥

k should be as near to #/3 as possible and m=n— 2.

Let us define the following terms:

k m k
Sf::: Z (xii_il)l—l'- E (xzi_f2)2+ Z (xai_fs)z
i=1

i=1 i=1

k m
Sfy: Z (x,;—X)yu-yo+ Z (xm'_fz)(J’z.'_}_’z)

i=1 i=1

+ Z (x5, — X3)(¥3i— V3)

i=1

k m k
. Sfy= > =3+ Y =7+ Zl (}’3;'—}73_)2
i=1 =1 i=
The lower and upper limits of the confidence interval for b are given as the two
roots of the quadratic equation in b,
£ —3,1—a/2))°
%()E3 —x)(b—b)Y= Lt . (i:_ 3)&/ ] (SS —2bS¢ + b*S¢)
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Chapter 2

MULTIPLE LINEAR REGRESSION

2.1 Introduction

2.1.1 Problems for multiple linear regression analysis

An investigator may, for a variety of reasons, be interested in studying the
relationship between rainfall and run-off in a particular area. Given rainfall
and run-off records, he would probably find linear regression methods helpful
in achieving his objectives. However, it would be foolish to suppose that, given
information on rainfall only, he could hope to predict accurately the resultant
run-off. Many other factors, some quantifiable, will influence the run-off in a
particular area. For instance, rainfall intensity and evaporation may both
influence the resulting run-off.

Thus, a realistic data base would not just consist of run-off and rainfall
readings only; it would consist of readings on run-off (called the dependent
variable) and readings on as many features which are liable to influence run-off
(called the independent variables) as it is sensible to gather. It is to this type of
data base that the technique of multiple linear regression analysis may be
applied with profit. Using multiple linear regression, it may be possible to
achieve objectives similar to those outlined in the sequence (a)-(g) given in
subsection 1.1.1 where, instead of only rainfall, we have a whole collection of
independent variables. Once we progress from studying how one or two
variables influence a third, graphical techniques and visual assessment become
more difficult and we have to rely much more on mathematical models,
However, this does not mean that the outcome of a multiple regression analysis
cannot be questioned or assessed. Applied common sense is even more vital in
checking for numerical blunders, invalid assumptions, etc. when interpreting
the outcome of a multiple regression analysis or considering unexpected
features of the data.

2.1.2  Assumptions made in multiple linear regression

Multiple linear regression applies to problems in which records have been kept
of one variable, y, the dependent variable, and several other variables
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Xy, X5, - - -s X;, the independent variables, and in which the objective requires
the relationship between the variable y and the variables x,, x,,. .., x, to be
investigated. For any such record, the specific mathematical relationship
{model) assumed is

y=a+bx, +tbyx,+ - +bx,+e (32)

wherea, b, b,, . .., b areconstantsand eisa variable. Thus, it is assumed that
y is linearly rclated to each of the independent variables and that each
independent variable has an additive effect on y. Therefore, at this stage, we are
assuming that x,, x5, . . ., X, do not interact amongst themselves in their effect
on y. The variable e serves the same purpose as in the simple linear model
described in subsection 1.1.2 and identical assumptions are made on e in
multiple linear regression. Thus, under repeated identical conditions (that is,
when values of X, x,, . . ., X, are kept constant), we expect the arithmetic mean
of values of e to be zero and we expect the variance of values of e to be the same,
whatever the constant values of x,, x,, ..., X,.

To carry out tests of significance or to establish confidence intervals, we will
need to assume that these values of e form a normal distribution and that all
values of e are independent.

2.1.3 Interpretation of the assumptions

The problem of deciding which is y and which is x is more well defined in the
multiple regression situation. Usually, we will want to assess the combined
effect of several variables on a single variable. This may be to predict y when we
know x,, X, . . ., X, Of to decide which of x,, x5, ..., x, do, in fact, influence y,
or we may simply want to summarise the data.

It is probably only in the latter case that there might be some doubt as to the
identity of y. The type of relationship being estimated again assumes that
X,y Xy, ;X are known or error free, filling just the same role as x in
subsection 1.1.3. Indeed, if it proves impossible to decide which is y amongst
the variables measured, then this may indicate that multiple regression analysis
is inappropriate and that some other type of correlation analysis, or principal
components analysis, would be more suitable for the problem.

The assumptions about the variable e cannot be seen easily in terms of a
graph, mainly because the model (32) is a hyperplane in (k +1) dimensional
space. However, we can use the interpretation of the simple linear model given
in subsection 1.1.3 to explain this more complex situation. If we interpret
a+ b,x, + byx, +--- + b.x, as being the value of y that we expect to observe,
given the conditions or situation defined by the values of x,, X3, ..., X, and if
we interpret @ + b,x, + b,x, + - + byx, + e as being the value of y that we
actually observe, then the value of e, the difference between what we actually
observe and what we expect to observe, again represents the error or
inexplicable variation in y.

Thus, if we knew the values of a, b, b,,..., b, and, hence, we could plot a
graph of observed y against y,y.y =@ + b,x; + -+ + bex, for each record, then
we would have the situation illustrated in Figure 8.

The vertical displacement of each point from the 45° line represents the value
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¥
(observed)

y deal
za+ho+. b

]

Fig. 8. Plot of observed and ideal values of y.

of e. If we were able to observe repeatedly values of v all with the same Videars
then we would obtain a vertical array of points and there should be an equal
spread on either side of the line. Furthermore, if we were to repeat this
procedure at a different value of y,.,,, then we should obtain a similar spread of
points (they should be neither more nor less widely scattered). Also, these
points should form a normal distribution centred on the line.

The assumption of independence has the same interpretation as in
subsection 1.1.3.

2.1.4 What can be achieved by using multiple linear regression?

The quick answer is ‘everything that was achieved using simple linear
regression and a bit more’. Estimates of a,b, by, ..., b, may be derived,
together with standard errors and confidence intervals. However, in multiple
linear regression, there is far more scope for tests of significance and far more
need for them.

Typically, for a variable x;, we will be able to decide the following:

(1) Whether x; has an influence on y.

(2} Whether, after allowing for the influence that other specified variables
have on y, the variable x; still gives some futher explanation of the way
in which y varies.

As an example of this, let us suppose that
y =run-off
x, =rainfall
x, =duration of rainfall
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Furthermore, suppose that, for the area being studied, when it rains, it rains at
a constant rate. Then, we would have the relationship x, = kx, where k is a

constant.
We would discover from our tests of significance that rainfall and duration

of rainfall both influence run-off. However, when we know what the rainfall has
been, the duration of the rainfall will tell us nothing further about run-off, i.e. if
x, is known, then x, is redundant. Realistic practical problems are rarely this
distinct, but we do have the potential to make this type of investigation in
multiple regression analysis.

Having summarised our data in terms of estimates of a,b,,b,, ..., b, we
may compare these estimates with similar estimates from other sets of data so
as to assess the similarity of the sets of data in terms of their relationship

between y and x,, X5, ..., X,
By substituting our estimates of a,b,,b,,...,b, into model (32) (and
disregarding e), we may predict y for specified values of x,, x,, . . ., X;,. Having

predicted y values at observed values of x,x,,...,x,, we may form the
‘residuals’ (the differences between the predicted y values and the observed y
values) just as for the simple linear model and for similar reasons.

2.2 The Basic Method

2.2.1 Fitting the model

The basic unit of data for this model will no longer be a pair of values of y
and x, as in subsection 1.2.1, but k + 1 numbers corresponding to values

of y, X, X5, .. -» X, Hence, the whole data set will consist of # such basic units
and will be denoted by (¥y, X113 Xa1s--»Xur)s (Vo X125 X220 -5 Xighr oo o
(¥o X1ms Xams + + s Xgn)-

The model (32) would imply the relationship
T oyi=a+bixtbxy b+ bhxgte (for i=1,2,...,n) (33)

for this set of data. However, just as it proved useful in simple linear regression
to rewrite the model into the form of model (25), there are some advantages in
rewriting the model (33} into the form

yi= o+ B0y — X))+ By(xy — X} + -+ Bl — %) +e; (34)

where

Xy etc.

Vi

==

_ 1 2 _
x1=52x1f Xy =

i=1 1

t

This is the form of model usually encountered in texts on multiple
regression. By comparing model (34) with model (33), we see that b; = §; (for
j=12,..,k)anda=a— B % — %, — - — X%

Figure 9 illustrates how the model and data might look if plotted with & =2
and »n = 3. The shaded arca represents the plane y =a + b;x, + b,x,, drawn
for y,x,,x,>0, and the large dots indicate the position of the points,
(V1o X115 %210 (P2s X125 X22)s (V3 X153, X23). Hence, the lengths e,,e;, ¢,
represent the vertical distance from each of these points to the plane.



36 MULTIPLE REGRESSION IN HYDROLOGY

Our problem is that, although we know the position of the points, we do not
know the position of the plane; in other words, we do not know a, b, and b,.
The method of least squares would lead us to choose those values of a, b, and
b, which minimise
2

e =

1 i

(yi—a—bxy;— beZi)2

D e
Do

5=

1

Once again, we are attempting to make the vertical discrepancy of the points
from the plane (regardless of sign) as small as possible.

In the general case of n observations and & variables, we will want to choose
a, b, b,,... b (ore,f,B,,..., L) to minimise

=

SZ

il

i

n
ef=% i—a—byxy—byxy— - = byxy,)?
1 i=1

(yi—a— ﬁl(xli_jl)_ Ba(xy; —Xy)— - _ﬁk(xki_'fk))z

il
1=

Solving d5%/60 =0,08%/2p, =0, ...,85%/8f, = 0 gives the following equations
for the values of a,f,,8,,...,8, which minimise S2 (denoted by

&aBIEBZ""!ﬁk):

—

Y i D= F) =B Y (=507 4B, 3 (i £ - 5y)

i=1

Tt Bk .; (X — X)X — %)

Il
—_

I
—

i)

_;1 (i = xy — X,)= 31 Z (x;— X )xy — X,) + Bz _i:l (x5 — Xz)z

i=1

"+ 3:; _; (X3 — X)X — %)

s

(= Px ~ %) = B, Z":l (= ¥ — %) + B, é:‘ (%2: = %)%, — %)

1

1

-+ Bk Z (X — -’Ek)z

Simplifications may be made to the presentation of this information by:

(1) A representation using matrices.
(2) Use of the notation

=

S, =

X5y

(xp=~XMyi—p) (forj=1,2,... k)

I
-

s

li
-

S =

IJ'Xf

(x;i— X —x) (for j=1,2,... kand I=1,2,.. k)

3
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Fig. 9. Regression plane and data points.

The equations may now be condensed into

Sx”' Sx1x1 lexz lexk ‘81
SXZ)' — lexz SIZ-‘Z S-TZ“k ﬁz
S.qy Sx 1 Xk Sxkx,; ﬁk
S, =S.8 (35)
Thus, the estimates 5, BZ, .. .,Bk are given by
B=S5.'S,, (36)

which, together with & = y, gives us estimates of all the parameters in model
(34). (S..! is the matrix inverse of S .}

2.2.2 Estimates and their precision

[f we assume that the variance of e;is o (for i = 1,2, .. ., i), then it follows that
2
O
Var (d) =—
7
However, as the estimates of f,, §,, .. ., f, are not mutually independent, there

are k? different variances and covariances associated with them. These are



35 MULTIPLE REGRESSION IN HYDROLOGY

conveniently displayed in a matrix, called the variance covariance matrix,
which is denoted by

var(f,)  Cov(B,.B;) Cov(f,B,) Cov (B, B)
Cov (Bnﬁz) Var (Bz) Cov (Ezsﬁ3) Cov (stﬁk)
C;)V (Bn BL) C-C‘V (Bzv Bk) VE-iI' (Bk)

and referred to as V. It may be shown that
V= oS} (37)

Equation (37) requires knowledge of o2 which, as in simple linear regression,
will be unknown. However, also as in simple linear regression, we may estimate
e; by the ith residual.

€=y, —a—f {5 — X)) = rlxy— X)) — = filxg— ) (38)
It may easily be shown that Z _,é;=0and, consequently, the arithmetic mean
of the re51duals is always zero. Hence, we may again base our estimate of 62 on
R=>7 = é}, called the residual sum of squares. However, in this case, the
approprlate divisor will be n —k — 1 as k + | degrees of freedom have been
‘lost’ in estimating a, ,, B, - .., B,- Hence,

. 1 . -4 _ - _ - _
Gzz___m Y =y = Bi(x = X)) = Byl — X)) — - = Bilxg — %))
h i=1

L

n—k—1 - ﬁlsxu‘ - BZS“Z} T ﬁk m (39)
where S =3 7_ (3, — )% _ .
To caleulate S, S, ,and S, ., it may be easier to use the expressions

- fii: i (ii yi)z/n
= X i (Z y)( xj,-) / n (40)
)

ijx;_ Zl xﬁYII (_Z xji)(_

although remarks made in Chapter 1, and in particular in subsection 1.2.1,
concerning numerical accuracy, are equally pertinent in this context.

Thus, we now have sufficient information to estimate the variances and
covariances of f,, f,,..., B, as well as the variance of 4. It is usually more
informative to study the correlatlons than the covariances and these may easily
be derived by

¥y

o)
[
[~1=

1= -

Cov (Bj-.» Bz)

(41
 Var (B} Var () )

Correlation between 8, and f, =
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By assuming that e, ~ N(0, ¢%) (for i = 1,2, ..., n), we may derive confidence
intervals for the parameters «, §,, ..., f,. In multiple regression, the residual
sum of squares follows o2y2_, _ . Consequently, (2 — «)//6°/n ~1,_,_, and
(Bj— Bj)/\/Estimate of Var(ﬁ’j) ~1, ._, where ‘Estimate of Var (ﬁj)’ 1s
obtained from the appropriate element of V{; (given in equation (37)) after
substituting 62 (given in equation (39)) for ¢°.

Hence, a 100(1 — o) %, confidence interval for « is

attin—k—1,1—0/2)/6%n (42)
and individual 100(1 — a) % confidence intervals for 3, B,, ..., B, are given by
B+ t(n—k —1,1 — 2/2)/Estimate of Var (§)) (43)

Since B, Ba. .. ., B, will almost always be correlated, there is some danger in
using these separate confidence intervals, particularly when the objective is to
find some ‘joint’ confidence region, for example, for §, and f§,. An assessment
of the correlation between f8, and fi, (see equation (41)) would be advisable and
if it proves high, then it may be as well to consider using the joint confidence
region. The 100(1 — &) % confidence region for f8,, f,, . . ., B isdefined by those
values of §,, f,, ..., f, which satisfy

B—BYS, B—-B <k + D)@ Flk+1,n—k—1,1—a)

where
B, B,
- | B B, ,
p=1 and B=| " (A’ denotes the transpose of A)
b By

2.2.3 Prediction

Having estimated the unknowns in model (34), we are in a position to predict a

value of y from knowledge of x,, x,, ..., x,. If we have values for x, x,, ..., x;
and these are denoted by x, ,, X,,, .. ., X;,, then we may predict y using
P=a+ e, — X))+ folxg, — %)+ -+ Bilx, — F) (44)

To determine the variance of p, let us define X, =[(x;, - X,), (x;, — X;),..

(X, — X,)]- )
hen, the variance of y is given by

Var () = ¢?X,S;'X,, (45)

The problem of considering what we are actually attempting to predict with y
has been discussed for simple linear regression. The distinctions made there are
equally relevant in the context of multiple regression. The variance given in
equation (45) only represents our uncertainty about «, B,,. .., §, and its use is
only appropriate when we are trying to predict the mean value of y. However,
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when we are trying to predict the outcome of a single reading, the variance
given in equation (45) should be increased to

0% +o?X S.'X,

pxx

the additional component, 62, being for the error of the reading.
Corresponding 100(1 — a) %, confidence intervals for the mean value or the
outcome of a single reading are

Frtn—k—1,1-092)/6X S)X, (46)

Frtn—k—1,1-a/2)/6*(1 +X,S;'X)) 47

and

respectively.
The confidence region for the hyperplane

y=a+f(x _£1)+ﬁ2(x2_fz)+"‘+ﬁk(xk_fk)

does not have any great practical merit, mainly because of the difficulty of
visually displaying such a region.

2.3 Significance Tests and the ‘Best’ Equation
2.3.1 General linear hypothesis

A variety of significance tests are available for studying various features of the
model (34). We deal here with these tests in isolation and later on will explain
how combinations of such tests may be used, for instance, to decide which is the
‘best’ equation.

Many tests can be constructed from one basic result which is, somewhat
ambiguously, referred to as the general linear hypothesis. A hypothesis about
the parameters in model (34) might, for instance, state that §,, 8,, B, and ff, are
all zero (i.e. variables x,, x;, x; and x, are of no importance in model (34)).
Thus, a general linear hypothesis might take a form which exactly specifies the
values of p of the parameters in model (34).

Imagine modifying equation (34) to take account of the information
contained in the hypothesis (in the above example, this would mean omitting
variables x,, x;, x, and x, from the equation) and performing the necessary
calculations to arrive at the residuals (given by equation (38)) associated with
this new (smaller) model. Suppose that the sum of squares of these residuals is
formed (denoted by Rj). Then, this quantity will be reasonably close to (but
targer than) the residual sum of squares calculated using the full model
(denoted by R) whenever the hypothesis is acceptable. In fact, it may be shown

that
Ry—R R
( P )/( _k_l)NFP'n_k_l )

whenever the hypothesis (assumed in calculating R.,) is valid.
Thus, in our example, R, would be the residual sum of squares obtained by
omitting variables x,, x5, x, and x, from equation (34). Acceptance of the




MULTIPLE LINEAR REGRESSION 1

hypothesis fi, = f,=f, =B, =0 whenever [(R,— R)/4)/[R/(n—k—1)]<
F(4,n—k—1,1-a) would provide a 10029 significance test of this
hypothesis.

In its most general form, a ‘general linear hypothesis’ will impose p
functionally independent constraints on the parameters «, §,, 8,...., f,. The
result given by equation (48) will still apply, even in this very general context.
Thus, a hypothesis of the form , = 8, (which implies 8, — , =0) would fit
within this framework and might well be informative if x, and x, were
measuring similar quantities. R, would be calculated by using the model

yi=oa+fi(x;—x) + Bi(xy —x,) + Bilxy — X3) + - + Blx —x) +e
=a+ f,[(x,;+x5) — (X, + )]+ Balxg; — X))+ -+ Bl —x) +e
=o+ f(u;— )+ (x5, — X3) + -+ Bilx, — ¥) +e

where u; = x|, +x,;,and #=(1/n) }7_ u;. For a 100a % significance test, the
hypothesis i, = B, would be accepted whenever (R, — R)/[R/(n —k —1)] <
Fll,n—k—-1,1-a).

2.3.2 [Initial significance tests

Having estimated all of the parameters in model (34), the most pertinent
question might be ‘Is there any evidence of a relationship between the y variable
and any of the x variables | have used’? or, in other words, ‘Can I predict y with
any success, from the x variables I have used ?

This question is equivalent to considering a hypothesis ,=f,=...=
B, =0 and, if this hypothesis were true, then model (34) would reduce to the
simple form y, = a -+ e. The residual sum of squares resulting from such a
model would be Ry =37, (y; - 7)?, since d=J.

Then, equation (48) would lead us to accept the hypothesis §, =, ="+ -
B =0 whenever

R, —-R R
( X )/( _k_1)<F(k,n—k—l,l—oc)

for a 100x %, significance test.
This procedure is usually displayed in the form of an analysis of variance
table.

Source Sum of squares Degrees of Mean square
Jreedom
k -
Regresston L Shi=R;—R 3
i=1
k
- Sum of squares

Residual S,— 2 S..B8;,=R n—k—1 =

. ” j; wisbs ( Degrees of freedom)

Total (y—7’P =Ry, n—1
=1
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The ratio

Regression mean square

Residual mean square

gives the same test statistic as that previously mentioned for testing the
hypothesis f, =, =--- = §, =0. The quantity

egression sum of squares
Total sum of squares

is called the multiple correlation coefficient between y and x|, x,, ..., x, and it
takes values between 0 and 1. At one extreme, if all the residuals (38) were zero
and, consequently, R was zero (i.e. the model managed to predict all the
observations exactly), then the multiple correlation coefficient would be 1. At
the other extreme, if the model predicted each observation as being y and,
therefore, totally disregarded any contribution which might be made by
Xy X5, ..., X, then R would be equal to Ry and the multiple correlation
coefficient would be zero. Thus, the multiple correlation coefficient takes values
between 0 and 1, a value near | indicating strong association (correlation)
between y and x|, x,,...,x, and a value near 0 suggesting little association
(correlation) between y and x, x,, ..., x, {or, at least, their observed values).

The next step in our analysis would probably be to enquire into the
individual effect of each of the x variables on the y variable. The hypothesis
f, =0 would appear to consider the effect of x; on y, but if we test this
hypothesis using the results of the general linear hypothesis (Section 2.3.1),
then it takes on a special meaning. We will, in fact, be comparing the model

i=ot Bilx i — X))+ B, 00— X,) + -+ Blx— X)) +e
with the model

Vi=a+ B — X))+ + Bl — %) e

and, consequently, our test will be telling us how much better our model would
be by including the term f,(x,; — x,) as well as all the other terms already in the
model. In other words, it will give us some idea of the additional information
that x, can provide about y over and above that already provided by
X, Xgy- ey Xy

Thus, if we calculate the residual sum of squares R, omitting the variable x,
from our model (34), then a 100« 9 significance test for , = 0 would accept
B, =0 whenever (Ry— R)/[R/(n—k—-D]< Fl,n—k—-1,1—a)}.

However, we also know, from Subsection 2.2.2, that

ﬁ 1 Bl ~ 1
 Estimate of Var(§,) " *'
and, hence, a 100a % significance test for f, = 0 would accept f§; = 0 whenever

B,

: —| <tin—k—1,1—¢/2)
\/ Estimate of Var (f,)
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which is equivalent to checking whether #, =0 falls in the confidence interval
(43). (See equation (43) for the source of \/ Estimate of Var(f,).)

These two test procedures are, in fact, identical; the square of the latter test
statistic gives the former and it is well known that F(l,n—k—-1)=1}_,_,.
Therefore, it is important to note that both procedures are assessing the
additional information supplied by x, over and above that already provided by
X, ..., X,. Hence, in a situation in which x, has a strong effect on y, butitisalso
correlated with, say, x, and x, which in turn have a strong effect on y, it is quite
likely that we would accept 8, =0 from the preceding test. This would simply
be because x, provided no additional information about y after the
information provided by x, and x, had been taken into account. To assess the
effect of x, alone on y, a simple linear regression of y on x,, as described in
Chapter 1, would be appropriate.

2.3.3  Selection of variables—the ‘best’ equation

In the previous subsection, an example was given where x, supplied no further
information above that already provided by x, and x,. However, we might also
have concluded that x, supplied no further information above that already
provided by x, and x,. This would clearly be true in the trivial case of x, = x,.

What should we do? Should we either include x, and exclude x, or vice
versa, or should we include both x, and x,? In what order should we start to
assess the relative importance of our variables and, furthermore, is that order
crucial ? As has previously been the case, our answer partly depends on what we
want to find out and on what purpose we have in mind for the regression
equation.

If, in fact, the requirement is to find which of x|, x,, ..., x, are associated
with v, then a simple linear regression analysis of y on each of the x variables in
turn will provide the answer. However, if the requirement is to predict y from
available information in the form of x,,x,,...,x,, none of which are
particularly costly to observe, then there is little harm in leaving most of the
variables in the model. Some reduction might be made by using the technique
described at the end of the subsection on initial significance tests (2.3.2), but
whenever a circular conflict arises amongst a group of x variables, all should be
left in the model. Occasionally it may be appropriate to quote several different
models. When the requirement is to ‘understand’ what influences y or to predict
y using only the ‘significant’ x variables, some more elaborate methods of
selecting variables must be used. Several such methods are available and some
of these are outlined in the following subsections.

2.3.4 All possible regressions

If we only require an idea of the ‘best’ regression equation and unlimited
computer time is available, then computing all 2* possible regression equations
(either including x, or not, either including x, or not, etc.) will give a good basis
from which to decide. If the multiple correlation coefficient is calculated for
each regression and the resulting 2* such coefficients are arranged in order of
magnitude, then examination of those regression equations that are associated
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with high muitiple correlation values should give an idea of the most important
factors.

2.3.5 Forward selection

For moderately large &, the ‘all possible regressions’ method is extremely
expensive in computer time. As a cheaper alternative, ‘forward selection’ aims
at ignoring equations which are likely to give small multiple correlations.

Step 1 is to perform the k& simple linear regressions of yon x,,yon x,,...,»
on x,, as described in Subsection 1.2.2. The test statistic for b =0,

|54

i

is calculated for each regression and the x variable which gives the largest of
these values is selected for inclusion in the ‘best’ equation, provided that its test
statistic is significant at a specified level. As an example, suppose that this
variable is x,.

Step 2 is to compute the partial correlation coefficients between y and each
of the variables not yet included in the ‘best’ equation, conditional on the
variable already included in the best equation. In our example, these would be
calculated by

r —r r
r o — yxj FXE XXy (49)
yx; \/(l _ ‘ri—u)(l — rij-\'l)

where x;, is the variable included in the ‘best’ equation. The ordinary product
moment correlation coefficients », . r_ and r,  are

roer fx
S S and S,
vV S_\'_\'S.n.\‘t W Sx;xJSkak AV S_\"\S_\"‘_tj
respectively. An interpretation of the partial correlation coefficient r ., is that

it measures the correlation between y and x; after both y and x; have been
corrected for the effect that x; may have had on them. Thus, r_, will give an
indication of the further contribution which x; would make in predicting y if it
was included in the ‘best’ equation together with x,. The variable with the
largest absolute value for its partial correlation is selected for inclusion in the
‘best” equation. For our example, suppose that this is variable x, _,.

Step 3 is to fit the ‘best’ equation as it is so far and, then, to test the joint
significance of all the variables included in the equation and the individual
significance of the most recently included variable. If it is concluded from the
first test that the model is of some value and, furthermore, from the second test,
that the addition of the most recently included variable is of value in the model,
then the procedure advances to step 4. However, if, from the second test, it is
concluded that the most recently included variable is not of value in the model,
then the procedure would stop here and the ‘best’ equation would be taken to
be the present equation omitting the most recently included variable.
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Thus, in our example, the model would be
yi=at B (= X))+ Bl — 5D +e

and we would use the procedure described in Subsection 2.2.2 to estimate «,
B.—, and B,. Then, using initial significance tests (2.3.2), we would try
separately the hypotheses f, |, = fi, =0 and §,_, =0. Rejection of the first
hypothesis would suggest that the model was of some value and rejection of the
second hypothesis, as well as the first, would suggest that the addition of x_,
was of value in the model (as well as x,). However, acceptance of the second
hypothesis would lead us to stop at this point and to state that the ‘best’
equation had been obtained by using x, alone, i.e. the ‘best’ model had been
given by the simple linear regression of y on x,.

Step 4, which is similar to step 2, is to calculate new partial correlation
coefficients between y and each of the variables not yet included in the best
equation, conditional on the variables already included in the best equation. In

general, to calculate the partial correlation coefficients of y and x,, x,, .. ., Xp
conditional on x,,,X,,,,..., X, the matrix
— i —
S,\) S.\':_\' S,tpj ; Xp+ 1y XKy
|
S-\‘IJ‘ S—\'I-\‘l S.\‘]XF | X1Xp+) XXk
. |
- |
|
Sxp) S.r,,xl S\p.lp ! XpXp+1 XpXi
_____________________ S S s ol
|
S.\‘p+|_\' SX;:+|.H S-l‘p+1-\‘p I Sv\'p+|-\'p+l S-l'p+1-\'k
. . 1 A
__Sxk)' ng.v; S—ﬂ-\'p i S.rkx,n! S.\'Hk _J

is partitioned as shown and the four regions are denoted by

Note that the variables not yet included in the model are used to form X, , and
those already included in the model are used to form I, ,. The corrected sums
of cross products between these two sets of variables occupy £,, = E/,. Then,
X,,.; is computed by ' '

En.z =En - z1222-212.21

This will be a symmetric (p + 1) x (,b + 1) matrix whose elements are denoted,
for the sake of brevity, by

Qg0 doy 42 Aoy
Ay, dyy 4y a4
oz Qy2 4z, a3,
dop @y, ayp app



46 MULTIPLE REGRESSION IN HYDROLOGY

The partial correlation coefficient of y and x;, conditional on x,.,,
Xp425-- 5%, is denoted by r and is given by

leo:)
r —

YXi-Xp+1,Xp+2s -1 Xk
~ Qoo

It represents the correlation between y and x; after both have been corrected for
the effects of x,.,,X,42,..., %, The variable with the largest partial
correlation is now included in the ‘best” equation.

Thus, in our example, we would calculate new partial correlation coefficients
between y and each of x,,x,,...,x,_,, conditional on x,_, and x,. The
variable with the largest absolute value for its partial correlation coefficient
would then be included in the ‘best’ equation. Suppose that this variable is
Xg_ -

The next stage in the procedure is to go back to Step 3 with the additional
variable included in the ‘best’ equation. In our example, this will mean that we
would have to estimate f, _,, 8, ;, B, and « and then test separately the hy-
potheses B, _, =f,_, =B, =0and f,_,=0. If these tests suggested that x, _
was of value in the model (as well as x, _, and x;), then we would again proceed
to Step 4. Otherwise, we would stop with the ‘best’” model using only the
variables x;, and x,_

This procedure will cycle around Steps 3 and 4 until eventually it stops in
Step 3 with a ‘best’ set of variables. The model estimated at the previous
execution of Step 3 will be the ‘best’ equation.

FXirXp+ 1. Xp+2s.eey Xk

2.3.6 Backward selection

This method is simpler to explain as it does not require calculation of partial
correlation coefficients.
Step 1 is to fit the full regression equation with all variables included.
Step 2 is to perform the initial significance tests (Subsection 2.3.2) for each
variable, i.e. to test B, =0, then 8, =0, then §, =0, etc. by computing

-

B
/ Estimate of Var (B)

If the smallest of these k£ quantities is less than t(n — k — 1,1 — a/2), then the
relevant variable is omitted from the equation. If not, then the equation as it
stands is used as the ‘best’ equation. (It is, of course, necessary to fix on a value
of a, preferably before starting the whole procedure.)

If a variable has been omitted in Step 2, then the procedure is to return to
Step 1 with the variable omitted. The procedure is then to cycle around Steps 1
and 2 until a ‘best’ equation is eventually reached in Step 2.

(for i=1,2,...,k)

2.3.7 Stepwise regression

Forward selection suffers from never being able to drop a variable once it has
been included into the ‘best’ equation. Backward selection starts with all the
variables in the equation and, consequently, is susceptible to rounding errors
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which may arise from inverting large matrices. A compromise between these
two methods would be one which performed forward selection with a
‘backward’ look at each stage. Stepwise regression is such a method.

Stepwise regression follows the sequence of steps outlined in forward
selection except that, in Step 3, each of the regression coefficients of each of the
variables included so far in the ‘best’” equation is tested and, for those not
significantly different from zero, the corresponding variables are dropped from
the ‘best’” equation. Thus, in our example, in the first pass through Step 3, we
would not only test 8, _, =0, but §, =0 as well. If either of these hypotheses
were accepted, then the corresponding variable would be dropped from the
‘best’ equation,

2.4 Extensions to the Basic Method
2.4.1 Fitting and comparing several regression lines

The comparisons suggested here are a direct extension of those discussed in
Subsection 1.3.2, the difference here being that, instead of having readings on
only one x variable, we have readings on & x variables. Thus, if there are n sites
from which we have collected data, then the data from site i will consist of r; sets
of (k+1) values and will be denoted by (¥, X, X5 .., Xy;) (fOr
J=82,...,r)

Our model for the data from site { will be

Yij= % +ﬁ1i(x1ij_ fli.) +ﬁ2i(x2ij_ Xy )t + ﬁki(xkfj_fu.) +e;; (50)

Estimates of o, f8,....,ff,; may be derived by applying the basic method
described in Section 2.2 to each site’s data in turn. The sums of squares and
cross products thus defined (Subsection 2.2.1) receive an extra suffix to indicate
that they relate to the data from site i, i.e. they are denoted by S,  and S o A

separate estimate for ¢ (see equation (39)) will be available from each’ site,
namely

1 K
22 __ i i
g = ri— k -1 |:S I=Zl ﬁth;y:' (51)
for site i.
To compare estlmates of 6% derived from the different sites, we may formally
test 62 = g2 =-..=g? by calculating the test statistic
Z (r,—k—1)6} "
M=(N—(k+1n)log,| = — ,—k—1)log, &}
(N = (e + Dnlog, | *=g—re— | = ¥ (n =k = Dlog, 5
where N=>"_, r.. As in the analogous test prcsented earlier in Subsection
1.3.2, a 1000 % significance test on 67 = 63 = ... = 62 would be to accept this

hypothesis whenever
M<y*n—1,1—a)

If we are able to accept this hypothesis, then we may safely proceed to tests on
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the similarity of the regression lines from the » sites. For this, we need some
further notation. For site i, we have already defined

L

Sic‘.)_ 2 ( jlm 'le )(ylm -}7!)

m=1

l

L

Sia= Y (K= %50 )Xy — %1,

m=1
S;'y= Zl (}’fm“ﬁi.)z
where
.__l z and . 2 Xj
I‘ m= 1 m=1

In addition, for the data combined over all the sites, we will define

n F.

Sﬁ,y"_‘ Z 2 (inm_fj..)(yim—f..)
i=1m=1

Si,x,= Z 2 (xﬁm—fj..)(xum“fa..)
i=1m=1

$5=% Y Gim—7.)
i=lm=1

where
) 1 o r. _ 1 & &

Then, f3, B3, .., B will be given by
B 5%, S Sl |52

X1xX2 Ly Xy
o o Q 0 o
[}2 _L lexl S.tz.rz szxk szl
o o 0 o @
Bk Sxkxl Sthz Skak SIU

These latter quantities are sums of squares, sums of cross products and
regression coefficients which are derived by supposing that all the sites data
were pooled into one large set and using the basic method described in Section
2.2. Thus, if we are able to conclude that the regression lines from the n sites are
similar, then the best summary of the relationship between yand x|, x,, ..., x,
would probably be provided by the overall estimated regression line,

Jaij=d0+ﬁc1'(x1ij_~f1..) +Bg(x2:'j_fz..) + +B:(xkij_-fk..)

where a=y_.
However, we may conclude that, although the regression coefficients
B.: 85 - - -5 Brido not differ from site to site, the position parameters «; do. To
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assess this, and also to give an estimate of the appropriate regression line, we
will define

Sie=2 Si,
i=1

S‘;Jx;_ Z Si‘j.ﬂ
i=1

s,= Y S,

The quantities fi<, f55, .. .,ﬁc, will be given by

fic c c c -1 c
ﬁl Snv, Snxz Sn Xx S ¥
fc ¢ c c c
ﬁz _ Snr. St;x; szrl. S‘Cz."
AC [~ < < [+
ﬂk SI&Y[ Sxkxz Sxm S.M*

The appropriate regression line for site i would be
Yi; =¥+ [}T(—Vlu — X))+ ﬁ;(xzu — X))+ + [}E(»‘Cku — X))

Notice that the regression coefficients are the same for each site but that the
position parameter varies from site to site.

Source Sum of squares Degrees of freedom
k
Overall regression Z ﬁ"S" &
Difference in positions (30 Z ﬁOS ) ( 155‘;]‘)
Difference in regressions Z Z Z ,()’“Sﬁl‘ n—1k
=1 j=1
Residual Z Z BiSi, N—(k+1)n
. i=1j=1
Total sy N-1

This analysis of variance table gives the same type of information as the one in
Subsection 1.3.2 and, as previously, it is preferable to carry out the tests in the
following order:

for 100 %, significance tests
(1) accept the hypothesisff;; =f,, =" - = B, (forj=1,2,... k}whenever
Difference in regressions mean square
‘Residual mean square

<iF((n—Dk,N—(k+Dn,1—a)
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(2) if the above has been accepted, then accept o, = a, =--- = o, whenever

Difference in positions mean square
Residual mean square

<Fn—I,N—(k+Dn1—a)
(3) if both the above hypotheses have been accepted, then accept that there
is no linear association between y and x,, x,, ..., x, whenever

Overall regression mean square
Residual mean square

< Flk, N— (k + U, 1~ )

In each case,

Sum of squares
Degrees of freedom

Mean square =

2.4.2 Observations with unequal precision

We considered carlier (Subsection 1.3.3) the problem of observations with
unequal precision where readings on only one x variable were available. In this
subsection, we will assume that our information consists of n sets of readings of

Vs X1, X2, .., Xy, denoted by (yy, Xr1sXq2s0 - sXauih (V2o Xa1, Xags - Xgpds oo
(Vs Xu1s Xpas - - -5 Xpi), together with n variances of the ¥s, 61,62, ., 08

The estlmates given by equation (36) will still provide unbiased estimates of
the regression parameters f§,,f5,,..., B,; however, as in Subsection 1.3.3,
alternative estimators with smaller variance are available.

Suppose that we re-define

=

ijy =
]

wilx; — Xy —»)

1
n

S:rjx: = z Wi(xjr‘ - jj)(xli - ’ft)

i=1

(Eoe(5) -(Eo)(5e) = oo

Then, we have & = y and least squares estimates for 8, 8,, .. ., B, are given by
equation (36) with S, and S, defined as dbove Similarly, the vartance

covariance matrix is gwen by equation (37) with ¢ omitted.
Thus, the 100(1 — «) % confidence interval for 5, would be

B+ Z(a/2)/ Var (5,)

1t is unlikely in practice that repeated values of y would be available with fixed
values of all the variables x,, x,, ..., x, and, consequently, the n variances of
the ys, o2,02,...,62, could not normally be estimated. Hence, no further
discussion of this topic is given here.

where
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2.4.3 Missing observations

The method of estimation described in Section 2.2 relies on there being
available n complete sets of (X + 1) numbers (y, x,, x5, ..., x,). When, for some
reason, a value for one of the x variables is not available in one of these sets, the
method of estimation as described is no longer applicable. As this problem
arises frequently, many attempts have been made at providing a solution which
takes the form of a simple modification to the least squares method.

However, no one particular solution appears to be the best in all situations.
The basic solution, with which most others are compared, is to discard all sets
of observations which are not complete and then to apply the usual least
squares method to the remaining data. Two of the simpler rival solutions are as
follows:

(i) Usethe mean value of the available observations of the variable in place
of the missing value.

(ii) Select an x variable highly correlated with the variable which has the
missing value. With complete data, perform a simple linear regression
(as described in Section 1.2) between these two variables and use the
resulting equation to predict the missing value.

It is said that solution (i) is good when using data with small correlations, the
basic solution is good when moderate correlations are present and solution (ii)
is best for highly correlated data. Each of the methods described can be used
when several values are missing, simply by repeated application. The basic
solution tends to be best when relatively few values are missing.

2.5 Special Models

2.5.1 Univariate polynomial models

Chapter | dealt with the problem of fitting a straight line; in"contrast, this
section will consider the problem of fitting a curve. If the model y =a + bx is
found to be inadequate in describing the relationship between y and x, then a
natural extension, which introduces some curvature, would be to consider the
quadratic model y =a + bx + ¢x?. If a plot of y against x reveals two turning
points, then a model-y = a + bx + ¢x? + dx” might be appropriate. In general,
the polynomial model

y=a+bx+bx?+... +bxt (52)

is a model to be considered as an alternative to a straight line model (which is, in
any case, only model {52) with k =1).

With the usual set of data (y,,x,), (¥;,x3),..., (¥, x,), then model (52)
would imply a relationship

yvi=a+bx+bxt+. . +bxt+e (53)

By comparing this with model (33), it is evident that when x,; = x;, x,; =x7,

x5; = X7, etc., the two models are identical. Hence, to fit a polynomial of degree
k, it-is possible to use all the techniques of multiple regression taking x, = x,
x, =x%, ..., x, = x* Rewriting the equation (34) presents no special problems,
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X
Fig. 10. Inappropriate data for fitting a quadratic model.

X, being the mean of the x values, X, the mean of the squares of the x values,
etc. Estimates of the polynomial coefficients b,,5,,...,5, (which equal
B, B, ..., B are given by equation (36).

Some difficulty may arise in determining S_! when & is particularly large or
when the x values are spread in such a way that it would be difficult to envisage
drawing a unique polynomial of that degree through those points. For
instance, if k = 2 (1.e. a quadratic is being fitted) and x, x,, . . ., x, consist of n,
valuesof — 1 and n — n, valuesof +1, then a graph of the data would be similar
to Figure 10.

One might be convinced by the argument that the best straight line should be
that which passes through the mean of the y values at x = — I and the mean of
the y values at x = + 1. However, there is an infinity of quadratics which would
pass through these two points. This is reflected in equation (36) by S_, being
singular and, consequently, S_! not existing.

Numerical problems in actually finding S_' arise when S__ is almost
singular. Such a situation might have arisen if, in the previous example, one
further y value had been available at x =1.000000001. The effect of this
additional information on Figure 10 is a fair reflection on the small movement
S, . would make from singularity. As most numerical routines for matrix
inversion are not 1009 efficient, there may be practical problems in
determining S_".

Because b, b,, ..., b, are associated with successively higher powers of x, a
more natural order to the tests of significance is now available. For instance,
investigating whether it was in fact necessary to fit a polynomial of order k
rather than one of order (k — 1) would be a natural first step to take. This
would be achieved by testing f, =0, as described in the second of the initial
significance tests of Subsection 2.3.2. If it proved possible to accept 8, = 0, then
the next step might be to refit the model with the x* term omitted and to test
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B._, =0, and so on. Eventually, when the hypothesis , = 0 has been rejected,
a satisfactory order of polynomial would have been reached and it would have
order s.

Depending on the problem, there might be some value in considering the
coefficients of the lower order terms in the model by refitting the model as

yi=a+bx;+b,xt+. - +bxite

and testing each of b, =0, b, =0,..., b,_, =0 separately, using the second
test procedure of Subsection 2.3.2. However, usually one wants to discover the
minimum order of polynomial that it is necessary to fit and then to predict yas
accurately as possible using that order of polynomial.

There is some advantage in using a set of orthogonal polynomials to rewrite
the model (52). This was particularly useful when the only available calculating
aid was a desk calculator as the need to invert a & x k matrix (S,,) iseliminated.
However, with the availability of programmable digital computers nowadays,
this advantage is less crucial.

By defining P,(x;) as an rth order polynomial in x;, the model (53) may be
rewritten as

Vi=YoPo(x) + 1, P1(x) + 7, Pa(x) +- - +1Px;) + ¢ (54)
The least squares estimates of y,, y,, ..., 7, would be given by
— . n n -1 [ = ]
To P! X Polx)Pilxy) ¥ Po(x)P(x;) Y ¥Polx;)
i=1 i=1 i=1 i=1
T Y PP Y [PUx)) Y PUx)PUx) ¥ onP(x)
= i=1 i=1 i=1i i=1
A Y PUX)Pox) ¥ PUx)P(x) 2 [P 2 P
L Li=1 i=1 i=1 _ | _i=1 _J

However, if it were possible to arrange for

Y PAx)Px)=0  (for r,s=0,1,2,....k and r#s) (55)
i=1

then we would immediately have

=

yiP(x)

=

(for r=0,1,2,...,k)

=2,
~
Il

[P.(x)]?

!

I
-

When the restrictions (55) hold for the polynomials Py(x), P,(x), ..., P, (x),
they are referred to as orthogonal polynomials. These restrictions enable the
coefficients in the polynomials to be calculated in terms of x,, x,, . .., x,. Using
a set of orthogonal polynomials was particularly valuable in precomputer days
as it avoided the inversion of a large matrix. However, even nowadays it is
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advantageous to use orthogonal polynomials so as to avoid problems of
numerical instability when inverting large, almost singular, matrices.

When the xs are equally spaced and thus x,=a +ib, the problem is
simplified by transforming x on to a unit interval scale using ’

Rk (56)

where

Hence, the values X, X,, ..., X, become —4(n —1), ——(n 3),...,3(n—13),
3(n— 1) Rewriting model (54) using the transformed X gives
Vi =oPo(Xp) +oy ¢, (X)) + - - +ad (X)) +e

where
Y (XN (X)=0 (for r,5=0,1,2,...,k and r #5) (57)
i=1

Since all problems with equally spaced x values will have the same X values (X;
will always be / — [(n 4+ 1)/2], it is possible to establish ¢,(X;) suitable for all
such problems. The first six orthogonal polynomials are

do(X) =1

o (X)=4,,X

¢ (X) = Ay (X? —5(n* = 1))

P3(X) = A4,(X° =53t = THX)

B4 (X) = A4, (X* —35Gn* = 13)X? + F5(n* — 1)(n* - 9))

$s(X) = A (X° —F5(n? = X3 + 1&5(150% — 2301 + 407)x)

Pe(X) = Ao (X® ~ (30 = 31)X* + 13:(5n* — 110n* + 329) X2

— 7 — D(n? = 9)(n? - 25))

Furthermore, for positive values of X, tables of the values of these polynomials
are available (Pearson and Hartley (1972)). For negative values of X, the

following relationship enables the values of the polynomials to be calculated
easily:

$2(— X) = (X)

and
¢)2r—1(_'X)=_¢2r—1(X) (fOI'I‘=],2,3,...)

The restrictions (57) define the polynomial ¢, (X) except for the arbitrary
constant 4,,. This could be taken to be unity, but tabulators usually choose the
value of 4, so that the values of ¢,(X) are integers. Thus, most tables contain
the values of ¢ (X) for positive X, the value of A, and the value of

i (X))



MULTIPLE LINEAR REGRESSION

Using these tables, it is a simple matter to calculate the estimates

. 3 (X)
d,=— (58)
¥ 16,007
and their variances
0.2
Var (a,) =—
Y [P (X))

i=1

The only inconvenience of using orthogonal polynomials occurs when rewriting
the estimated equation as a polynomial in x. For the case of & =2, we would
have to unravel the fitted equation

¥ =dg@Po(X) +a,9,(X) + 2,,(X)

= OACO + d[[iln(i‘%‘f—)} + dz[AZn(x%j)z - le(nz - 1)]

Fortunately, it is not usually necessary to perform this step before carrying out
tests of significance on the polynomial coefficients. With no prior knowledge of
the order of polynomial which would describe the relation between y and x, a
procedure analogous to that used with model (53) would probably be a naturai
first step to take. This would be achieved by, first of all, forming the analysis of
variance table which is given below.

Source Sum of squares Degrees of Mean square
Sfreedom
Linear term & ¥ (o (X))? !
i=1
Quadratic term 5 ¥ [0,(X))
i=1

' _ Sum of squares
B Degrees of freedom

kth Order term g Y [ X)]?
i=1
Residual By subtraction n—k—1
(4007 n—1
Total izz, Y 0

Then, the hypothesis ‘coefficient of x* =0 would be tested by accepting the
hypothesis whenever

kth Order term mean square
Residual mean square

<F(l,n—k—1,1—a)

‘for a 100a % significance test.
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The procedure with model (53) suggested that if this hypothesis was
accepted, then the next step would be to drop the term x* from the model, re-
estimate the parameters and then test the hypothesis ‘coefficient of x* V" = 0.
Using orthogonal polynomials, this is achieved simply by adding the kth order
term sum of squares into the residual, doing likewise with the degrees of
freedom and then testing the hypothesis ‘coefficient of x*~!" =0 by accepting
the hypothesis whenever

(k — I)th Order term mean square
New residual mean square

<Fl,n—k,1—a)

for a 100« % significance test.

If this hypothesis was accepted, then the next step would be to add the
(k — 1)th order term sum of squares and degrees of freedom to those of the
already augmented residual and to test the hypothesis ‘coefficient of x* =% =0.
This procedure would then be repeated until a hypothesis ‘coefficient of x* =0
was rejected and then the fitted model decided on would be

IR G T i e 9

The new residual mean square used in the test of “coefficient of x* =0 would
provide an estimate 62 of a2 and it would have (# — s — 1) degrees of freedom.
The 100(1 — 2) % confidence intervals for «, «,, ..., a, are given by

g, +rn—s—1,1 —ot/Z)\/o"'Z/i (¢, (X)]* (for r=0,1,2,...,

If it is intended to use equation (59) in order to predict y for x = x,, then the
predicted value of y is given by

¥ =d, ad)( ) rxquz( ’E)+..+ozs¢s(x°;f)

and its variance is given by

wiree o (o] o]

This variance only reflects the uncertainty about o, o, ..., o, and its use is
appropriate when the intention is to predict the mean value of y. When the
intention is to predict the outcome of a single reading of y, a further ¢ should
be added to Var (y).

Corresponding 100(1 — o) %, confidence intervals for the mean value of y and
the outcome of a single reading of y are given by

P+n—s—1,1— oc/2)\/a"‘1:% + i ([‘Pr(xob_j):r/i [¢r(Xf)]2):|
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and 7
A 2 1 5 Xo— ¥ T2 n 5
yit(n—s—l,l—a/Z)\/a [1 +;+ Z ([d),( b ) /Z [¢,(XD] ):‘
respectively.

However, it must be emphasised that it is dangerous to extrapolate using a
polynomial model which has been formed by deleting higher powers. The order
of polynomial fitted has been chosen to describe the relation between y and x
within the region of x values observed and, outside of this region, there is no
information on the relationship between y and x. Consequently, it is only safe
to extrapolate when it is known that a certain degree of polynomial describes
the relation between y and x both within the region of x values observed and
over the region in which extrapolation is to be performed.

2.5.2 Multivariable polynomial models

Just as the simple model y = a + bxwas expanded to the polynomial model (52)
so the multiple regression model (33) may be expanded to include powers
of x,,X,,...,%, products of x,,x,,...,x, and products of powers of
X1y Xgs ey Xpe

For example, for k =2, we might have the model

yvi=a+bx;+byxy+ boxii+ by X5+ b ox, e

(a quadratic in x, and x,). However, simply by defining X, = x;, X3; = x;
Xy, = x%, Xy =x3;, X5, = X X4;, the model would become

yi=a+b X+ b, Xy + b Xy + 05, X0+ b,Xs5 + e

which is identical to model (33).

Thus, the polynomial extension of model (33) simply produces a model of
the same type as model (33) and it can therefore be handled by the technigues
described in Subsection 2.5.1 in connection with the polynomial model for a
single x variable. However, with a moderate value of &, the possible number of
terms generated (even by a quadratic form) can be enormous and fitting such
models is usually quite unjustifiable and frequently dangerous. Unless a large
number of observations, spread over a wide region of values of x,, x,,..., X,
is available, an apparently good model may be generated, not because the
correct relationship between y and x,, x,, ..., X, has been found, but because
there are so many parameters in the model that there is almost a separate
parameter for each observed y value.

2.5.3 Periodic regression

Many hydrological phenomena exhibit periodicity, the period being possibly
annual, monthly or daily, but usually associated with time. For example,
evaporation in the United Kingdom is strongly seasonal with a pronounced
annual cycle.

Suppose that we have records of the value of a variable y taken at n equally
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spaced time points, i.e. pairs of values (y,,7,), (¥5,1,),..., (¥, 1,) where
t;=a + ib. Then, the time scale may easily be modified to give readings at times
1,2,...,n by redefining the time scale as T, = (1, — a)/b.

Using this new time scale, a model with period # would be

(21[7"!.) , (ZRTI-)
yi=o+ fcos| —= |+ ysin + e,
n n
27i 2ri
=+ fcos (7?-) + 7sin (—:ﬂ) +e (60)

In other words, if we had further observations, T,=n+1, n+2, n+3,...,
then the model value of y for 7; = £ would be identical to the model value of y
for Ty=n+k,2n+4,. . (except for the error terms). For instance, for
T.=n+k,

2 . {2
Vysy =2+ ficos (‘E(}T‘T—F'El) + 7 sin (H_(nnikl) te,.

2nk . 2mk
=o+ ficos 27r+7 + ysin 2n+T +e,.,

2nk . {2mk
=o + ficos — |t ysin = +e, .y

since cos(2m + 0) = cos fand sin (27 + #) =sin fand, hence, y, , , is identical to

the model value for y, (except for the error term). Thus, for a model with period

n, the model values of T, =»n 41 onwards repeat those of 7;=1 onwards.
Figure 11 gives an example of such a model with period 12,

27w . {2mi
yi=1+0.5co0s (ﬁ) +0.25 sin (—15)

plotted for i=1,2,...,24 (i.e. the model repeats itself after 12 values).

As the model (60) is written at the moment, the periodicity is equal to the
number of observations collected. To eliminate this restriction, we may extend
our model to include terms with certain other periods and then arrange for our
estimation technique to select those terms with periods which best match the
periodicity exhibited in the observed data.

Hence, our mode} would be

s ) .
yi=a+ Y [ﬁ,cos(—:i Ti) +y,sm(2’—?]’i):| +e,
r=1

=a+ i [ﬁ,cos(?f)ﬁﬂzr sin(%{f)]+ei (61)

In the above model, r =1 gives terms of period n, r = 2 gives terms of period
n/2, and so on, until finally r = s gives terms of period n/s. As phenomena with
period of 2 or less are unlikely to be evident in the data, the maximum value
which it is sensible to take for sis 3(n — 1) when n is odd and 1n — 1. when n is
even.
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Fig. 1}. Periodic regression curve.
By taking

2rx1 . . f2ax1 .
X,; =CO0S i X,; =8In i
n "
2nx2 L [2ax2
X3; =COS ! X4; = SIN i etc.
n n

the form of model (61) is clearly identical to that of model (33). Hence, the
methods of Section 2.2 are applicable in periodic regression. However, as with
orthogonal polynomials (described in Subsection 2.5.1), the form of S, will
simplify to be a diagonal matrix.

Since
" 2 " /2
zcos(—?:)=zsm(§f)=o (for r=1,2,...,5)

i=1 i=1

the means of all the x variables are zero.
Therefore, S, . =37, (x; — %)(x; — X)) will become Y., x;x,; which is

x;x; -

equivalent to either
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> sin (E'l i)sin (&Eﬂ i)
i=1 n h

depending on whether x; and x, correspond with ‘cos’ or ‘sin’ terms in model
(61) (r; and r, are integers between 1 and 5). For r, # r,, the first and third of
these expressions are zero and the second expression is always zero, even when
r;=r. Hence, S__ is a diagonal matrix.

Thus, estimates of the parameters are as follows:
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¥; sin (? 1') (62)

The variances of these estimates are as follows:

2
Var (¢) = (:_z

2

- 2
Var (B,) = Var () ==~

The analysis of variance table analogous to the one produced for orthogonal
polynomials is given below.

Source Sum of squares Degrees of Mean square
Jreedom
. 1 n 2 22 2
Terms of period n 3 (F1+77)

. LT _ Sum of squares )
Terms of period n/2 2(;32 +¥%) (_m

"o,
Terms of period n/s 3 (B2 +99)

Residual By subtraction n—2s—1

Total Y (-7 n—1
i=1
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To test the hypothesis 8, = y, = 0{i.e. there is no periodicity of length n/r in the
data), a 1002 %, significance test would accept this hypothesis whenever
‘Term of period n/r’ mean square

F2n—-2s—-1,1-
Residual mean square <F2,n—2s o)

To simultaneously test f, =f,=---=f,=y,=y,=---=7,=0, a 100a 7]
significance test would accept this hypothesis whenever

nog o .
o 2 (B2 +79D)
W»or=1

Residual mean square

<FQ2s,n—2s—1,1—0)

As with the orthogonal polynomial model, it is not necessary to recompute the
parameter estimates each time a term is omitted. Consequently, after applying
the first test procedure several times with suitable values of r and, hence,
omitting certain terms from the original model, the residual sum of squares for
the new model would be equal to the residual sum of squares of the original
model plus the sums of squares of all terms omitted from the model. Its degrees
of freedom would similarly be augmented to n — 25" — 1 (where s — 5’ is the
number of pairs of terms which have been omitted). An estimate of ¢ would
then be provided by the new residual mean square with »# - 25" — 1 degrees of
freedom.

To predict a value of y at time ¢, calculate T= (¢t —a)/b and then the
predicted value of y is given by

< S 2
y=d+ Y [ﬁ,cos(—:—rT) +ﬁ,sin(%T)]
r=1

where the summation does not necessarily include all terms as some may have
been rejected as a result of the tests mentioned above. Its variance is given by
2

Var () =%(1 +4s')

where s is the number of pairs of terms left in the summation above.

Clearly, this variance is independent of 7" and, hence, the precision of
estimation is the same at all points in time. This emphasises the critical
dependence of estimation on having the correct model. The model (61) assumes
that patterns are repeated after a definite length of time and, consequently,
when that length of time is greater than the range of observed values, this
method of prediction is as dangerous as polynomial prediction. Therefore, it is
only reliable to extrapolate results when prior information on the existence of
certain periodicity is available.

The preceding discussion deals with the case of a model containing terms
with periods which are simple fractions of #, the number of readings. However,
the model does not need to have its periodicity related to the number of
observations. For instance, if it is known that a 12 month periodicity exists and
observations have been taken monthly, then the appropriate model might be

27 . {2m
yi=o+ 8, cos(ﬁ Ti) + 7, Slﬂ(ﬁT5)+ei
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Also, there is no reason why a model should not contain both cyclic and non-
cyclic terms. For instance, a model might be of the form

2n

. {2
y;=o+f, cos (ﬁ T,-) + ¥, sin (g T,-) + 8%+ Bazit e

where x; and z; are two independent variables such as temperature and rainfall.

However, for models containing terms with periods which are not simple
fractions of #, the full method described in Section 2.2 would have to be used as
S, would no longer be a diagonal matrix.

2.5.4 Dummy variables

So far, we have assumed that all our information will be quantitative, all our
measurements will be numbers. However, it is often the case that some
information is qualitative. For instance, we may have recorded supplementary
information on the geological features of the area studied, such as the area
being either permeable or impermeable. We may have recorded wind force as
being either strong, medium or light.

This type of information may be included in a multiple regression model by
defining dummy variables. In the first example, we would have a single dummy
variable x, defined as follows:

x =0 when permeable
x =1 when impermeable.

The variable x would then be included in the multiple regression equation with
all readings in permeable sites having x =0 and all readings in impermeable
sites having x = 1. A significant regression coefficient associated with x would
indicate that permeability was of value in explaining the variable being studied.

As a result of this, we may decide to make the information concerning
permeability more detailed, perhaps on a 5 point scale. We might then use a
variable x taking values 1, 2, 3, 4 or 5. However, this could imply an equally
spaced scale which would mean that, for instance, the difference between
permeabilities 4 and 5 would be the same as the difference between per-
meabilities 1 and 2. It might be more satisfactory to define four dummy
variables as follows:

X y z w Permeability
] 0 0 0 1
0 ! 0 0 2
0 0 1 0 3
0 0 0 ] 4
0 0 0 0 5

Thus, in areas of permeability 3, for instance, we would have x =0, y =0, z =1,
w = 0. The estimates of the regression coefficients associated with x, y, zand w
would then give some idea of the effect of permeabilities 1, 2, 3 and 4, relative to
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5, on the dependent variable being studied. For example, suppose that the
regression coefficients of x, y, z and w were 0.4, 0.3, 0.2 and 0.1 respectively.
Then, our model would be saying that we should add 0.4 to readings at sites
with permeability 5 to get readings comparable with those at sites with
permability |, and similarly for sites with permeabilities 2, 3 and 4. [t would
also be saying that the ordering of permeability on a scale 1 to 5 was justified by
its effect on the variable being studied. However, if the regression coefficients
had been 0.4, 0.1, 0.1 and 0.4, then this would have suggested that sites with
permeability 1 and 4 had a similar effect on the vaniable being studied and that
sites with permeability 2 and 3 had a similar effect which was nearer to that of
sites with permeability 5.

For phenomena whose effect on the studied variable is far less obvious than
permeability, the use of dummy variables and, in particular, the study of their
regression coefficients may well give insight into the relative effects of different
levels or features of the phenomena.

For certain phenomena, it may be sensible to build a multiple regression
model using dummy variables only. On the other hand, dummy variables may
be used in conjunction with other more conventional variables to make up the
regression model. No assumptions are violated by using a variable which can
obviously only take two values, indeed most experimental design models are
composed entirely of such variables. However, it must be emphasised that to
deal with r states, levels or conditions, it is only necessary to use (r—1)
variables. For instance, if variables had been used in the previous problem as
shown below, then S, . would have been singular.

x » z w v Permeability
] 0 0 0 G 1
0 ] 0 0 0 2
0 0 1 0 0 3
0 0 0 1 0 4
0 0 0 0 1 5

2.6 Alternatives to Least Squares

2.6.1  Pencil and ruler

Although a complete assessment of the relationship between the y variable and
the varables x|, x,,...,x;, cannot be made graphically, considerable insight
into the relationship can often be gained from simple graphs. For instance,
plots of y against x, y against x,, etc. will give some indication of where there
are signs of strong relationships, where there might be problems due to a poor
dispersion of values of the x variable and where there are signs of nonlinearity
(manifested by certain points falling a considerable way from the trend of the
rest of the data or by marked curvature in the plots}). Assessments of the
relationships amongst the x variables may also be made graphically.
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A method has recently been suggested by Andrews (1972) for displaying
observations of many variables on a single two dimensional graph. Suppose
that n sets of observations on variables z,, z,, .. ., z, are available and denoted
by (21,231,520 )s (2125 2225+ 3 Zp2)s o - o5 (2405 Zaps - - - Zpm)- FOr €ach of these
sets of values, the function

X=zl/\/§+zz sint+ z; €08t 4z, sin 2t + z5cos 2t 4

is plotted (X against 1) for —n <t < n. Thus, for n sets of observations, »
periodic graphs are produced.

Probably, the inference that can most easily be drawn from the resulting
graph is which of the # sets of observations are similar. A set of graphs that
cluster together will suggest similarity in the sets of observations which
generated those graphs.

In a regression context where we have variables y, x|, x,, .. ., X, such plots
may be valuable on the x variables alone or on y and x,,...,x,. Similarities
may be detected between certain observations and this would suggest that these
observations may have arisen under similar conditions. Equally well, the
technique may be used to give a concise summary of already established
similarities in groups of data. This technique is usually most effective when the
more important variables are used as the coefficients of the low frequency terms
in the function X.

One graphical method that has been suggested for plotting three
dimensional data in two dimensions is to simplify one of the variables by
reducing the number of different values to say half a dozen (perhaps by
grouping) and then, on a two dimensional plot of the other two variables, to
relate the size (or darkness) of each point plotted to the value of the simplified
third variable.

2.6.2 Robust and distribution free methods

The method of Daniels (1954) (see Subsection 1.4.2) may be extended to deal
with & independent variables. Equation (33) is equivalent to

a=y,—x;by = xyuby— - —xub,

(with ¢, omitted). Therefore, each observation generates a hyperplane and the
intersection of these hyperplanes will lead to estimates of a,b,,...,85,.
However, with more than one x variable, the visual appeal of this technique is
lost and some of the computation can be cumbersome.

This tends to be the problem with other distribution free methods and the
emphasis in recent years has been more on robust methods of estimation
related to least squares. One such method was suggested by Hinich and Talwar
(1975). It aims to minimise the effect of the occasional observation which is a
long way from the trend of other observations, i.e. a set of values
{¥i X1 X205 - - -» Xg;) Which is associated with a large e, (in model (33)).

The method consists of dividing the » sets of observations into m = n/k
separate groups and then estimating a, f8,, 8,, . . ., §, separately on each group
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of data using the basic method described in Subsection 2.2.1. This will give rise
to the following set of statistics:

Group Estimate
X B, B, B By
! @R BB ;.
2 i BB B i
m BB e

A preliminary estimate of « is taken to be the median of g',...,a"and it is
denoted by &”. Similarly, preliminary estimates of §,, B,, ..., f, are computed
and denoted by f7, 85, ..., if. The residuals

k
fr(x,—x) (fori=1,2,...,n)

1

=vy. —af —
e, =Yy o
r=1

are formed and a range estimate of o is calculated using the expression
G = (€y 75, — B0 25)/1.654, where &, is defined to be the value below which 100g 7,
of the values é,,é,, ..., €, would fall if they were arranged in increasing order
of magnitude. Thus, 72% of the values é,,¢é,, . .., é, would fail below &, 5, and
28 % of the values would fall below & ;4.

All observations whose associated residual é; is greater than 46 are discarded
from the data and the basic method described in Subsection 2.2.1 is then
applied to the remaining data. This is particularly suitable for problems in
which there are a large number of observations, some being of dubious quality.
The general problems of detecting outliers (observations which are associated
with large es) will be discussed in Section 4.3. The choice of 4¢ as the level at
which to reject observations is somewhat arbitrary and it may be necessary to
alter this to satisfy the particular requirements of the problem in hand.

2.6.3 Ridge regression and principal components regression

The basic method outlined in Section 2.2 relies on the existence of the inverse of
S, If some of the independent variables x,, ..., x, are linearly related (i.c.
there is collinearity or multicollinearity), then S_' will not exist and,
consequently, there will be no solution to equation (35).

Methods developed to cope with problems of collinearity have established
themselves in their own right and, as such, they are included in this section
although they are highly relevant to Section 4.3.

Principal components regression (also known as orthogonal regression)
consists of selecting uncorrelated combinations of variables x,,x,,...,x;
which show maximum variation in the data (the principal components), taking
these combinations as new variables z,, z,, ..., z, and performing a multiple
regression analysis of y on the first few of z,z,,...,z. These principal
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components are derived by finding the eigenvalues and eigenvectors of S, . after
it has been scaled so as to have all diagonal elements equal to unity.
This scaling of S__is most easily achieved at the model stage by rewriting the
model
Fi=at il — X))+ Bi(xy — %)+ Blx, — X)) e

=+/‘\/5—(\/—S_——)+B\/§—(—-\/§T)+

/ (x — %)
+ ﬁk Sx T TT—— ¢
KXk /S:-u

and by letting §,./S, . =7, and u,, = x,,/ S, .- This gives
I X,
u,=- U, =
& T
and, after substitution, the model becomes
Vi=oty (g, — )+ yy(uy, — Hy) + -+ 9l — 1) + e

Hence, by standardising the x variables as above, the form of the model is
retained but it is re-written in terms of a set of variables with the property

n

as

" 2 (x;— %)
-\ f:l
i~ =— =
izzl (un r) Sx,x,
Thus, the least squares estimates of V1> Y2> - - +» Vi 4r€ given by the solution of
Suly l Suluz Sulu,‘ };]
Suz)‘ — Sﬂlltz 1 Suz“n 72
Suk_\' Su1 ey Suzuk 1 ﬁk
where
S, S..
=—=E__ apd Sy=—72= (forj=1,2,...,kand I=1,2,., k)

S =
o AV S.\';.\‘,-S.nx, \Y% Sx;xj

This equation may be written as S,, =S 7.
If it is possible to solve this equation, i.e. if ST ! exists, then the estimates of
the original regression coefficients #,, £,,..., 8, may be determined from

Br = ’J;r/\f Sx,x,'

However, in principal components regression our first objective is to find the
eigenvalues and eigenvectors of S, Suppose that the eigenvalues are denoted
by Ay, 4z ...,4 and that their associated eigenvectors are denoted by
Vi ¥a...., ¥, respectively. Then, these eigenvalues and eigenvectors must
satisfy
S, = 4,9, (where £, 24,2 4,>-.. 2 1)

L r

and
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There are many efficient numerical techniques for finding these eigenvalues and
eigenvectors, especially as §,, is a symmetric mairix, and most computers have
at least one eigenvalue routine amongst their software.

As /, is the largest eigenvalue, its associated eigenvector v, has the
interpretation that z, = (u#,,4,,...,4,)¥, 1s the linear combination of the
variables u,,,,...,u, which shows maximum variation amongst the data.
The next largest eigenvalue is 2, and its associated eigenvector v, has the
interpretation that z, = (i, u,, ..., )V, is the linear combination of the
variables u,,u,,...,u, which, amongst those linear combinations which are
uncorrelated with z,, shows maximum variation amongst the data. The
eigenvalue A, and eigenvector v, have a similar interpetation relative to z, and
z,, and so on.

Proponents of principal components regression suggest that, in most
problems, the eigenvalues Ai,,4,,...,4, fall into three groups: those
substantially greater than zero, those slightly greater than zero and those
precisely zero (except for rounding error).

The existence of eigenvalues near zero will indicate that the inverse of S,
probably does not exist. If the inverse of §_, does not exist, then equation (35)
cannot be solved and, hence, the basic method outlined in Section 2.2 will fail.
The cause of this would be the existence of an inter-relationship amongst
some of the variables x,x,,...,x, (for example, a relationship such as
X, + X, =X + x,),1.e. some of the variables X|, Xy, ..., X, are linearly related.

If an eigenvalue 4, is precisely zero, then thls would imply that
z, =ty Uy, .. UV, —Constant the constant being (,, 4,, ..., #,)v,. Hence,
by 1nvest1gat1ng the zero eigenvalues, it is possible to determine the nature of
the relationships which exist between x,, x,,..., X;.

Potentially, there are k variables, z,,z,,...,z, each succeeding one
summarising slightly less of the variation in the data. In a principal
components regression analysis, we would discard those z variables whose
associated eigenvalues were nearly or precisely zero. Thus, retaining only
Zy, 2, ..., Z,, OUT regression equation would become

Vi=0g+0,(2;— £) +05(z5— D) + -+ 0,(z, — Z,) T & (63)

Because of the orthogonal nature of eigenvectors, estimates of the parameters
8y, 81+ ., 0, are given by the very simple equations

5,—‘_
A,

!IM:

_J;)(Zri_z_r) (forr:]sza---,p)
and
o=y

It may be shown that estimates of the regression coefficients y,.¥,,..., ¥, are
given by
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However, in a situation in which certain of the eigenvalues 1,,4,,..., A, are
precisely zero, it is as well not to place any great reliance on the interpretation
of the individual regression coefficients of the x variables. For example,
suppose that £ =4 and that the fourth eigenvalue was zero, revealing that
Xy +Xx; =x;3 + x,. From a principal components regression analysis, suppose
that we have deduced a regression equation y =x, + 2x, + x, — 2x,. Using
the known relationship between the xs, this would give the equation
y=x,+2x;—x,.

These two equations would be equally good at predicting y, but clearly the
coefficients of the x variables on their own are virtually meaningless and can be
varied at will.

As a further consequence of the orthogonal nature of eigenvectors, the
variances of the regression coefficients are given by the simple equation

Var(8,)=0d%4i,  (forr=1,2,...,p)
and an unbiased estimate of ¢ is given by
. | " _ - - .
¢ =m|;:zl (i =92 =401 — 4,05 —-- — j‘péﬁ]

As with the orthogonal polynomial models in Subsection 2.5.1, an analysis of
variance table may be established for testing the hypotheses §, =0, d, =0, etc.

Source Sum of squares Degrees of Mean square
Sfreedom
First principal component H 1
Second principal component 4,62

(_ Sum of squares )
WDegrees of freedom

pth principal component A, 02
Residual By subtraction n—p—1
n
Total Y (-5 n—1
i=1

A 100 % significance test would accept 8, = 0 whenever

rth Principal component mean square
Residual mean square

<F(l,n—p—1,1—a)
In order to predict a value of y for specified values of x,, x,, . . ., x,, it would be
necessary to evaluate z,, z,,.. ., z, and then to calculate

P40z =2+ (5~ D)+ 4 82, 5,)

When the mean value of y is being predicted, this estimate would have variance

1 L
2 _ —
7 (ﬂ +r§1 ]'r)
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However, when the outcome of a single observation of y is being predicted, the
above variance should be increased by o?.

A corresponding 100(1 — %) % confidence interval for the mean value of y
would be

yrun—p—1,1-0/2)

Ridge regression was introduced by Hoerl and Kennard (1970) and it involves
altering equation (35) to

S, = (S, + W)B

where }
w, 0 0
Wt
6 0 Wy

The reason for this modification is, once again, an attempt to overcome
difficulties of collinearity, although other interpretations are available. Thus,
estimates of the regression parameters are given by

B=(S..+W)'S,, (64)

These estimates are no longer unbiased but, under most conditions, it will be
possible to choose W so that these estimates have smaller mean square error
(average of the squared differences between estimated and correct values of §)
than the least squares estimates.

In practice, it is necessary to decide on some value for W. To start with, we
will assume that w, = w, = - - - = w, = wand make use of a ‘ridge trace’. A ridge
trace involves evaluating B in equation (64) for a range of values of w(=0) and
plotting the individual coefficients against w on a single graph. A typical
example with £ =5 is shown in Figure 12.

A point where the curves are beginning to flatten out, such as w = 0.4, would
be taken as a reasonable value of w by the proponents of ridge regression. It1s
usual to take as small a value of w as possible so as to keep B close to the least
squares estimate (36).

An alternative method is to make use of the principal components
mentioned earlier in this section. For this method, the regression equation is
written as in equation (63) and the ridge regression technique is applied to this
model. Hence, using an analogous notation, we obtain the equation

S.,=(8..+W) (65)
A suggested choice for w, is ¢2/87 (for i =1,2,...,k).
Since neither 6% nor 8,, 8,,. .., §, are known, it is necessary to obtain first

estimates of these parameters. These initial estimates may be obtained from the
usual principal components regression analysis. New estimates of § are formed
by solving equation (65) and these estimates are used to calculate new values for
Wwy,...,w, which, in turn, are used in equation (65} to re-estimate 8. The
procedure continues until values of w; stabilise.
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Fig. 12. A typical ridge trace.

However, as the estimates obtained are biased estimates and the bias is a
function of the unknown regression parameters, it is not a straightforward
matter to proceed further with confidence intervals or tests of significance on
the parameters.

2.6.4 Bayesian methods

There is an interesting link between ridge regression and certain Bayesian
approaches to the problem.

If we assume that §,, §,,. .., B, have normal prior distributions in which B;
has mean zero and variance o}, and that the f§s are independent, then the
posterior distribution of p has mean (S, + W)™!S,, where W is defined in
equation (64) but with the added restriction that w; =06?%/6?, the ratio of the
error variance to the ‘uncertainty variance’ in the prior distribution of B; (for
i=1,2,...,k).

Two additional pieces of information are available from the Bayesian
approach. The first is that the variance covariance matrix of the posterior
distribution of g is given by ¢*(S_ + W)™ '. The second is an extension
to equation {(64). If the prior distribution of B, is known to have mean
0, and  Bo=[f].B9,....80], then the posterior mean becomes

[

(S, +W)TI(S,, + WB,).

2.6.5 Functional relationships
By generalising the models of Subsection 1.4.4, we obtain an overall model
ideal y =a + b,(ideal x,) + b,(ideal x,) + - - - + b (ideal X))
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and ) .
vy reading =1deal y +¢
x, reading = ideal x| + §, (66)
X, reading =1ideal x, + 4,, etc.
If we introduce a variable x, which always takes the value unity (and, hence, x,
reading = ideal x,) and, furthermore, we denote y by x;_,, then our model
becomes Y+ b ideal x, =0 where by=a and b, = — 1.
Thus, in general, we may consider the model (66) as being of the form

k
> b, ideal x, =0
r=1
where x, = ideal x, +e,.
If we denote the variance of e, by a,, and the covariance between ¢, and e, by
a,,, then the matrix

Gy G2 Tk
Gy © o
t2 22 2k
L= _
Gy Oz Tk
is the variance covariance matrix of e, e,,..., ¢,

Suppose that we have n sets of observations on x,,x,....,x, which are
denoted by (.\'1 12¥12s s xlk): (le, X22000 05 xz&), tere (.\'"1, O IR xnk) and
that S, is defined to be

XXy le.‘.'z X1Xp

S _ XXz X21X2 sz,\'k
xx T Y. .

Sx 1 XK Sx;xk S.\:gxk

where

n

erx, = Z (xri - 'fr)(x.\'i - fs)
i=1
Then, estimates of b={[b,b,,....b]) are given by the latent vector
corresponding to the smallest latent root of |S, , — AX|=0.
However, as it is extremely unlikely that £ would be fully known in a
hydrological problem, no further details of this method are given here.
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Chapter 3

BEFORE A MULTIPLE REGRESSION
ANALYSIS

3.1 What to Include and Why
3.1.1 Why is the analysis being conducted?

At some stage it will be advisable to consider just why a multiple regression
analysis is being attempted and precisely what are the objectives. This salutary
exercise 1s best carried out before any analysis is performed, for the following
reasons:

(a) Itwill probably influence the manner in which the analysis is conducted.
(b} It will anticipate problem areas and some precautions may then be
taken before the analysis is attempted.

We have set out already some objectives (Subsections 1.1.1 and 2.1.1) which
might lead an investigator to apply a simple or multiple linear regression
analysis and, for the purposes of the rest of this section, these are best
condensed into:

(1} Prediction of y for specified values of x|, x,, ..., x, which are within the
region of observed values.

(2) Prediction of y for specified values of x,, x,, ..., x, which are outside
the region of observed values.

(3) Investigation into which of the variables, x,, x,, . . ., x,, influence y and
the nature of any relationships that may exist.

Objective 1 is probably the easiest to tackle since the basic methods outlined in
Sections 1.2 and 2.2 are usually sufficient. There may be some gain in precision
from using the methods of Section 2.3 to eliminate variables but this gain must
be balanced against the problems mentioned below in association with
Objective 3. The methods described in Sections 2.4, 2.5 and 2.6 may, of course,
be used if they are appropriate.

Objective 2 is far more hazardous. Although the methods of Sections 1.2 and
2.2 again form the basis for estimation, some assessment of the stability of the
estimated relationship should be made before any reliance is placed on
prediction. In such a situation, it is usually unwise to attempt to eliminate
variables,
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Objective 3 will require using the methods of estimation given in Sections 1.2
or 2.2 together with the techniques of elimination of variables given in Section
2.3. However, there is the danger that an important variable may not have been
observed and this would consequently distort the estimated relationship and
any conclusions drawn from it. Another problem is that high correlations
between the x variables may lead to misinterpretation, particularly with
methods from Section 2.3.

3.1.2 Which independent variables should be used?

When considering which independent variables to measure, it is worth aiming
for the following ideals, even though it is rarely possible to achieve them.

The first ideal is that variables which are not highly correlated should be
selected wherever possible since high correlations lead to problems of
estimation due to singularity of S_, and to problems of interpretation when
using the methods of Section 2.3. If some of the x variables are measuring a
similar quantity, then it will usually be better to replace them with a single
variable formed by a simple combination of them. Alternatively, a principal
components analysis as mentioned in Subsection 2.6.3 may suggest a
combination of these variables which is worth using on its own. When the x
variables naturally fall into groups according to the nature of the measurement
being made, e.g. climatic variables, surface drainage variables, seasonality
factors, etc., it may be better to perform a separate principal components
analysis on each of these sets. This might then lead to a single combined climate
variable, a single surface drainage variable, etc. and each of these may then be
used in the regression model.

The second ideal is that variables should be selected in such a way so as to
ensure that the regression parameters have some ‘physical’ interpretation, as
well as a statistical one. This will give interpretation to any tests mentioned in
Section 2.3 and, in particular, it may enable the investigator to see why certain
variables might be eliminated from the regression equation. Equally well, it
may enable the investigator to insist that certain variables are retained in the
model because of a known causal relationship between the dependent variable
and the independent variable in question.

The third ideal must be to include all the important variables, i.e. to get the
model right! This is particularly important with Objective 2, where a
meaningful relationship must be established within the experimental region
before it is at all likely to be valid outside that region. As already mentioned,
elimination of variables from a regression equation, using techniques described
in Section 2.3, is liable to lead to error when an important variable has been
omitted. In particular, if the omitted variable happens to be causally related to
y, and if some of the included variables are correlated to the omitted one and
consequently also correlated to y, then quite misleading inferences might be
drawn about the effect of the included variables. These inferences would, at
best, only be valid within the experimental region.

In contrast, it is quite often useful to include a variable which is known to be
unrelated to the dependent variable y. Confirmation of its redundancy, from
the analysis of Sections 2.2 and 2.3, is some check on both numerical and
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inferential procedures. The converse might suggest either numerical in-
accuracy or that an important variable has been omitted and that spurious
relationships are being generated as a consequence of this.

Instead of including all independent variables as values of x,, Xyt Xy, 0t
may be useful to use particular values of one or more of these variables to break
the data into groups. For instance, consider the simple case of a model with two
independent variables, x, and x,, where x, is causally related to y and x, is
associated with y, but not causally (a nuisance variable). By grouping the data
in such a way that, within a group, all values of x, are identical, it will be
possible to perform separate regressions of y on x, for each of the groups. The
stability of the regression equation in different circumstances may then be
assessed from the variability of the fitted regressions from group to group.
Information about the effect of x, on y will be temporarily lost, but this should
not be important when it is only a nuisance variable, The idea may be extended
to grouping the data in such a way that values of two or more variables are
constant within one group.

In the simple case of two independent variables, our overall model would be
y=a+bx, +b,x,. When the model y = a + b, x, is used for each group, this
should lead to b, being the same for each group, and to a (which is @ + b,x, in
the overall model) varying from group to group. However, if b, does vary from
group to group, then this might mean that the effect of x, is influenced by the
level of x, and thata model of the formy =a + b, x, + b,x, + b,x, x, might be
more satisfactory.

This raises another major problem on independent variables; having decided
which variables are to be included, how should these variables be introduced
into the model? The possibilitics are enormous. For example, just from two
variables, we might have the model y =a + b, x, + b,x; + byx,x, + b,x /x, +
bslog x,, and many more terms could have been inciuded. With n observations
of y, itis not difficult to dream up (n — 1) artificial variables (like those given in
the above example) which would lead to a residual sum of squares of zero, i.e. a
perfect fit of model to data. However, it is unlikely that there would be any
meaning in such a model and, perhaps more important, it is quite possible that
such a model would be quite inadequate with a new set of data. In other words,
the model would provide no insight into the relationship between the
dependent variable and factors influencing it.

Selection of the types of functions of variables to be introduced into the
model must be made bearing in mind the practical interpretation of those
functions. Methods of choosing a suitable transformation of a variable will be
given in Section 3.3, but these should be treated with caution as they will lead to
a model which is only valid within the region of observed values. When an
attempt is made to include powers and products of powers of x variables (such
as xi, X{X,X3, XiX,, etc.), this must be done in an ordered manner and with
restraint. The remarks made earlier in Subsection 2.5.1 about the order of
testing for polynomial models are also applicable in this context. It is usually
sensible to begin by enquiring into the contribution made by the high order
terms and then to eliminate these terms successively until a satisfactory model
is-reached. A danger of including too many terms in the model is that an
artificially small residual sum of squares could be produced simply because of
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the large number of parameters. However, from significance tests, it might
appear that all of the included terms were vitally important.

The inclusion of products of certain of the variables implies some joint
(interactive) effect of these variables on y. Thus, it may be informative to use
grouping of the data to examine the relationship between these variables. For
example, inclusion of the term x, x, would imply that x, and x, had some joint
effect on y. By grouping the data according to x,, it would be possible to
examine the nature of the relationship between x, and the regression coefficient
of x,. If itis found that they are linearly related, then inclusion of the term x, x,
would be justified (giving an overall model y =a + b,x, + b,x, + b;x,x;). But
if, for instance, a quadratic relationship is revealed, then it would be
appropriate to include a term (a + bx, + cx3)x, (giving an overall model
y=a+bx, +byx; + byx,x; + byx X3).

3.2 The Distribution of the Dependent Variable

3.2.1 Regquirements of least squares

In Subsections 1.1.2 and 2.1.2, it was stated that, for estimation purposes, the
errors e, must have constant variance and that, for inferential purposes, they
must follow a normal distribution. (The assumption of independence will be
discussed in Section 3.4). As we are regarding the xs as fixed, this implies that y
must have constant variance and follow a normal distribution. However, for a
particular dependent variable such as run-off, it will usuaily never be possible
to say whether either of these assumptions is true. We may be able to speculate
on the possibility, advance a few theories, carry out tests, examine residuals,
etc., but, at best, we will only ever be able to say that we are ‘pretty sure’ or that
‘it’s a reasonable assumption’.

Because of the uncertainty of the situation, it is important to consider
whether these assumptions are crucial and to investigate the circumstances
under which the method of least squares is liable to give misleading estimates
and inference. This type of investigation examines the ‘robustness’ of the
particular methed, in this case, least squares. '

Concerning estimation, least squares estimates remain sensible estimates
regardless of the normality assumption. However, as has already been
mentioned (Subsections 1.3.3 and 2.4.2), when the variances of the e;s are not
constant, the estimates may be relatively imprecise, although still unbiased,
and the variances of the estimates will be incorrectly estimated. In the case of
simple linear regression when it is assumed that the es have variance a2,
the variance of the slope estimate is given by equation (8), Var(b)=
62/3"_, (x,— %)?, whereas it should be Y7_, ¢7(x,— X)*/[Ti_, (x;— x)*]* when
e,,€,, - - ., €, have variances o2,..., 02 Thus, if large values of x are associated
with large variances, then the latter will exceed the former and hence equation
(8) will underestimate the true variance of the slope estimate. However, the
variances will need to be quite noticeably different before these weighted
methods show an appreciable gain in the precision of the estimates.

Although an inconvenience as far as estimating the model is concerned, a
relationship between an x variable and the variance may, in itself, be an
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important feature of the process being studied. Discovering this feature may be
Just as informative as actually fitting the model. Consequently, it is worth
considering the reasons why the variances are changing before either ignoring
the problem or trying to use some transformation to eliminate it.

One problem associated with the distribution of the ¢;s is that of asymmetry,
1.e. positive and negative errors of the same magnitude not being equally likely.
This problem has an unpleasant effect both on least squares estimates and on
most other estimation procedures. It is usually advisable to reduce asymmetry
as much as possible by a transformation of the data.

Another problem is that of outliers, i.e. values of e which are exceptionally
large and more frequent than the normal assumptions would suggest. Qutliers
may be produced by gross errors of observation or by undetected changes (or
instability) in the phenomena being studied. In attempting to detect the
presence of outliers, it is easy to confuse their possible existence with that of
asymmetry. Consequently, it is advisable to eliminate this problem whenever
possible and techniques which help to detect outliers are given in Section 4.3
(see also Subsection 2.6.2).

Frequently, the omission of an important variable from the model is the
cause of apparent variation in the variances of the e;s, asymmetry or even
outliers, as discussed in Subsection 3.1.2. However, the same problems may
also appear when a linear model is inappropriate or when polynomial terms
which should have been included have been omitted.

Concerning tests of significance and confidence interval statements, the
assumption of normality for the e;s is more crucial. However, although this
implies that y must be normally distributed (as the independent variables are
regarded as fixed), it appears that if either y or some of the x variables are near
normally distributed, then the tests of significance are not misleading. In other
words, the tests of significance appear to be insensitive to non-normality in y
whenever the xs themselves come from a near normal distribution. On the
other hand, if the xs do not come from a near normal distribution and if some x
values are very different in magnitude from the remainder, then the tests of
significance are very sensitive to non-normality in y.

If the variances of the e;s are not constant and the basic method of Section
2.2 is applied, then ¢* will be incorrectly estimated and, consequently, the
variances of the regression coefficients will be incorrectly determined. This will
lead to errors in tests of significance, the magnitude of these errors depending
on the relative magnitudes of the variances of the e;s. Typically, with ratios of
3:1, a nominal 5% test of significance may correspond with only 15%
significance. Thus, although unequal variances do not have a serious effect on
the regression coefficient estimates, they may seriously distort any inference
drawn from tests of significance, in particular, in any of the variables selection
procedures described in Subsections 2.3.3 to 2.3.7.

3.2.2. Evidence to justify or question the assumptions

It would be unwise to assume that, for instance, log (run-off) always follows a
normal or near normal distribution just because in a few studies such an
assumption has been justified. There are no simple rules which govern the
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distribution of a quantity in all contexts. Nevertheless, relevant past experience
is extremely useful in assessing the possible validity of the least squares
assumptions and, wherever possible, reputable studies similar to the one being
undertaken should be examined for supporting evidence and counter evidence.

If the variable being studied either is actually calculated from the average of
several other variables or could conceptually be regarded as such, then the
central limit theorem may be of help. Roughly, this states that the distribution
of the arithmetic mean of a set of random variables tends to the normal
distribution as more and more random variables are included in that mean,
provided that the values of one of the random variables do not dominate those
of the others. For example, the distribution of rainfall values will usually
become nearer to the normal distribution as the time base is increased. On a
daily basis, there are many zero readings and the data is not normally
distribution. However, average monthly rainfall calculated as the arithmetic
mean of the twelve monthly rainfalls in a year might have a nearly normal
distribution provided that it did not, for instance, always only rain in
November, or never rain in June. Furthermore, the average rainfall of 48
monthly figures might have a distribution which was nearer to the normal than
the distribution of the 12 month average.

If there are obvious restrictions in the range of values that the variable can
take, or if certain intermediate values are impossible, or if the variable is
discrete, then it may be prudent to question the assumption of a normal
distribution. By their nature, many of the variables studied in hydrology, such
as river flow, give positive values only and this contrasts with a normal random
variable which potentiaily can take values from —co to c0o. However, provided
that the majority of values are well above zero (case (a) in Figure 13), this
problem may not be of practical significance. On the other hand, if a large
proportion of values are just above zero {case (b)), then the assumption of
normality may be quite untenable.

Another possibility is that the variable can only take a set of discrete values,-
for example, 0, 1, 2, 3 and 4. The distribution of this variable will consist of five
spikes as shown in Figure 14(a) and this is a long way from the shape of the
normal distribution. Equally well, the measuring apparatus which provides the
values of our variable may only work in a series of relatively wide steps. A

(8} {b)

Fig. 13. Distribution of non-negative variables
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Fig. 14. Discrete, discontinuous and truncated distributions.

typical shape for the distribution of this variable is given in Figure 14(b).
Finally, Figure 14(c) shows the shape of a distribution which might result from
a variable where values above a certain level could not be recorded. By
considering the nature of the reading being made and any instruments being
used, it is possible that these gross departures from normality might be
detected.

The existence of a lower limit for values of a variable might cause asymmetry
in the distribution. For instance, if some values are a long way above the lower
limit, but most are not far from the lower limit, then the distribution might be
similar to that shown in Figure 15(a).

Figure 15(b) shows another type of asymmetry which has been caused by the
distribution of the variable (shown by the continuous ling) being composed of a
mixture of two distributions (shown by the dotted lines). For example, this
might occur in river flow measurements when flow is maintained by artifical
means in dry weather (lower distribution) and there is run-off in wet weather
(higher distribution). In such a situation, asymmetry might be overcome by
dividing the data into dry and wet weather data and fitting separate models to
the two sets.

Consideration of the nature of the readings may also help in assessing the
assumptions of constant variance. Probably, the situation which can most
easily be detected is where the variance increases (or decreases) with the mean,
Typically, this may be the result of instrument error increasing with the

{a}

Fig. 15. Asymmetric distributions.
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magnitude of the readings or the phenomena being much more variable at high
mean levels. An example of the latter would be a situation where there are
extremely high levels of run-off (or river flow) which then produce quite
different physical phenomena from those experienced at medium and low
levels. A transformation may help to overcome this problem but, again, it
might be more satisfactory to divide the data into two groups and accept that
the two sets of data relate to different phenomena.

When the readings are counts of the occurrence of some phenomenon, it
may be that a Poisson distribution is a reasonable model for the readings. A
direct consequence of this assumption is that the mean and variance are equal,
i.e. a rise in the counts means a more variable count. Again, a transformation
might help in this situation.

There is also the possibility of visually assessing the assumpuon of constant
variance. Plotting y against x in the simple linear regression situation was
advocated in Subsection 1.4.1 for a variety of reasons. Figure 16 indicates some
of the possible cutcomes of such an exercise.
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Fig. 16. Some problem sets of data.

Outcome (a) may have been caused by the variance of y increasing with x and
outcome (b) by the variance of y increasing as x values become more extreme.
For clarity, both graphs show a fairly uniform density of points over the region
of x values. However, in practice the density might vary (reflecting the relative
scarcity of observations at various x values) and it is easy to misinterpret
density varying with x as variance varying with x.

Outcomes (c) and (d) are a reminder of other problems, nonlinearity and
outliers respectively. Again, each may be assessed with a graph, but
consideration of the nature of the readings is also important. Existence of an
asymptote or a maximum (or minimum) value of y may invalidate the use of a
linear model, particularly when readings are taken near these limits.
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Assessment of the combination of values which the independent variables
actually take may suggest instability in the process or phenomenon being
studied which, as a consequence, might cause a wild y reading (an outlier).
Where several independent variables have been recorded, a plot of y against
each x in turn, as suggested in Subsection 2.6.1, may arouse certain suspicions
which might be confirmed by analysis of the residuals (see Section 4.3).

3.2.3 Tests of the assumptions

Only when the data consists of several values of p, all with the same set of values
for the independent variables, will it be possible to apply any of the above tests
of the assumptions before.a regression analysis. Although this may occur in
simple linear regression, it is unlikely to happen in multiple regression.
However, it may be possible to form groups of y values with similar values for
the independent variables and, provided that not too much confidence is placed
on the outcome of the tests of the assumptions, some useful information may
be gained from them.

If it is possible to form n groups of y values with #; in the ith group, then the
test of equality of variances given in Subsection 1.3.2 may be applied to these
data, but note must be taken of the sensitivity of this test to non-normality.

There are many tests for assessing normality which use either just a single
sample of y values or several samples of y values. As non-normality can take
many forms, it is not a simple matter to recommend just one of these tests.

In the case where just a single sample of y values is tested for normality, the
values of y are denoted by y,,»,,...,y, and y= Y7_, v,/n. A test to detect
asymmetry is based on the statistic

_il (¥ —}7)3

3| -

\/b_l= 1 3/2
(E .g,l (¥; _Jj)z)

However, a test to detect deviations from the ‘normal’ shape in symmetric
distributions is based on the statistic

These tests are designed to pick out distributions where tails are too long or
peaks are too fat.
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The distributions of \/b_,, b, and for a for normal samples (and hence the
significance points) are given in Table 34, Pearson and Hartley (1972).

An alternative test which makes use of normal order statistics was proposed
by Shapiro and Wilk. Details of this test and necessary tables are given in
Tables 15-18, Pearson and Hartley (1971). This test appears to have good
properties and the practical advantage that tables are available for its use with
samples of only three or more y values, whereas \/b_l is tabulated for n > 25, b,
for n> 30 and a for n > 11.

Pearson and Hartley (1971) also give details of combined tests of normality
using several samples of y values.

Graphical methods may also be used for assessing normality. The following
method requires the use of normal probability paper. The values y,, ¥,,...,¥,
are arranged in increasing order of magnitude, y,,, < v, <+ - < ¥, and the
quantity [(i —1)/n}is used as an estimate of the distribution function at y;,. The
scales of normal probability paper are arranged so that a plot of y,;, against
100((i — )/n] (for i = 1,2,...,n) will produce a set of points which, roughly,
form a straight line whenever y,,y,, ..., », come from a normal distribution,

¥ii)

100l

2 5 10 20 00 40 50 60 70 BO 50 95 93

Fig. 17. Use of normal probability paper.

This is illustrated in Figure 17. The points will rarely fall exactly on a straight
line but a visual impression of linearity-nonlinearity (normality-non-
normality) may be formed from the graph. There is some controversy about
the use of [({ —1)/n] and some statisticians prefer (i —0.3)/(n +0.4) but this is
only crucial when the plot is being used for estimation purposes. Table 9,
Pearson and Hartley (1971), may be used for a similar graphical assessment
when normal probability paper is not available.

Detecting an outlier in a sample of n values is equivalent to detecting a
special type of non-normality. Thus, not surprisingly, the tests for non-
normality mentioned earlier in this subsection also tend to be used to detect the
presence of outliers. Another test worth mentioning is based on the statistic

Yy — Yoy

\/(é, o _-‘7)2) / (n—1)
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where y,,, and y,,, are the largest and smallest y values respectively. Table 29¢,
Pearson and Hartley (1972), gives the distribution of & from which significance
points may be determined. One advantage of using this criterion is that it
points to a particular value as being the outlier.

Ifitis suspected that more than one value is grossly in error, i.e, there is more
than one outlier, then the above test may be re-applied to the sample with the
first outlier omitted. However, it is quite possible that the presence of several
outliers will be missed by this method. A test which copes with this problem is
called Grubbs Test. It involves ordering the observations, TS I
Yy S < ¥, and calculating the statistic

n—k
Z (y(i) - ﬁk)z
L, ='_=nl____
Z (y(n _ﬁ)z
i=1

where

n
2y )
=1

This quantity is designed to be used for testing whether the & largest values are
outliers and tables of the distribution of L, are given in Tietjen and Moore
(1972). A simple modification allows for a test of whether the & smallest values
are outliers. In the same paper, a statistic is also given for testing whether the &
values furthest from the mean (above or below) are outliers.

A recent book which covers the topic of outliers from regression models as
well as outliers in general is Hawkins (1980).

I o
W=, g LYo and r=a

3.3 Transformations
3.3.1 Variance stabilising transformations

Most variance stabilising transformations exploit a known or an observed
relationship between the mean and the variance of the dependent variable. As
already mentioned in Subsection 3.2.2, it may be possible, by considering the
nature of the variable, to anticipate a relationship between its mean and its
variance. Alternatively, plotting y against x may give some empirical evidence
of a relationship.

If we are in the fortunate position of having repeated y values under similar
conditions, i.¢. all with the same set of values for the independent variable(s) (as
described in Subsection 3.2.3), then we will be able to estimate the mean and the
variance of each group of data and plot these estimates against cach other.
From the resulting graph, we will be able to assess a possible relationship
between the mean and the variance. Thus, if we have » groups of yreadings, the
readings in any one group being taken under similar conditions, and we denote
the readings in the ith group by y,,, v, .. -s Virp then we may calculate

yi==73 Vij and st = ] > (vi; = 7
TS =1 =

and plot s? against ..
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Alternatively, as in Subsection 3.2.3, it may be possible to form groups of y
values with similar values for the independent variable(s) and, provided that
some caution is exercised, to proceed as above. A particular danger is that
an important variable may have been omitted from the independent variables

studied.
Thus, we might be in the position to assume that the mean of y, denoted by g,

and the variance of y, denoted by ¢, are related by
a7 =f() (67)

where the form of fis known. For any transformation z = g(y), we have the

approximate relationship
dg(p) |*
2—_"
o; |: du S

where o2 is the variance of z =g(y). We may now choose the function g so
as to make o2 independent of . This would be achieved by choosing a function
g which satisfied

dy
wer |
W

For example, if a plot of estimated standard deviation s, against y; produced a
straight line through the origin, then we might assume the form of relationship

(67) to be
ol = (by)?

Our choice of transformation to stabilise the variance would have to satisfly

dp 1
g(p)oc L}—# = log. 1

Thus, by taking the transformation z = log, y, the variance of our transformed
variable would be approximately

1 2
§=[—] [bu)? = b*
u

The table on page 84, taken from Bartlett (1949), summarises some of the more
usual transformations.

3.3.2 Transformations to normality and linearising transformations

When the phenomenon that we wish to study as the dependent variable does
not have a natural underlying measurable scale, we may only be able to arrange
different states of the phenomenon in order. If there are n different states of the
phenomenon being studied, then these could be arranged in order and the
numbers 1, 2, 3,...,n (their rank) associated with the different states. For
example, the three weather conditions, dry, drizzle, heavy rain, might be
replaced by the numbers, 1, 2, 3. However, when y can only take three possible
values, the distribution will not bear much resemblance to the normal
distribution.
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Distribution of y Variunce in Transformation Approximate
terms of variance on
mean, p new scale

Poisson i \/)— 0.25
Binomial {proportion) u(l = /e sin”! \/; 1/4n
L . 1.
Negative binomial p+ap? T sinh™! ., /ay 0.25
a
Empirical au \/; .4q
Empirical ap? log, y a
log,q ¥ 0.189a

. I

Empirical by + ay? —sinh ™' Jay 0.25h

Ja

The use of expected normal scores assumes an underlying normally
distributed measurement for the phenomenon. The # values of y (namely 1, 2,
3,...,n)correspond to n values of the underlying measurement, the smallest of
the underlying measurements corresponding to y =1, the next smallest to
¥y =2, etc. Thus, if we replace y =1 by the mean value of the smaliest
observation in a sample of » values from a normal population, then we will be
getting somewhere near to the underlying normal scale. The mean value of the
ith smallest observation in a sample of n values from a normal population is

= — T [OX)) T — DX dY

n! « ¥ 1
TTE=DYm=-0' | _, J2n

where

x 1
¢(X)=f e~ oy
—ar 8/ 27'{
A transformation to normality is to replace y = i by z;. Tables of z; are readily
available, for example, Table 28, Pearson and Hartley (1972). The table below
sets out the transformation for # = 8.

¥ ! 2 3 4 5 6 7 8

Transformed y —1.424 —~0.852 -0.473 —-0.153 0.153 0.473 0.852 1.424
(=2z;)

A more comprehensive set of transformations to normality was suggested by
Johnson {1949). Use of these transformations usually requires a knowledge of

the mean and variance of y, together with \ /b, and &,, as defined in Subsection
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3.2.3. Thus, if we have n values of y, denoted by y,,»,,...,¥,, taken under
similar conditions, then we would need to calculate the following quantities:

There are three transformations which are as follows:
SB: z=7+ d log(x/(1 —x)) O<x<l)
SU: z=y+ dsinh~ ' (x) (—o0 <x< )
SL: z=y+ élog(x) (0<x<o0)

where x = (y — &)/4 and y, 8, £ and 4 are unknown.

These unknowns are estimated using y, s*, \/E and b,, and the particular
transformation which best suits a particular problem is chosen on the basis of
\/b—l and b,. The methods of estimating y, 8, £ and 4 are given in Pearson and
Hartley (1971) and Tables 34 and 35 help with the calculation. Alternatively, a
computer program is given in Hill, Hill and Holder (1976).

A power transformation which achieves symmetry, but not necessarily
normality, may be used when repeated y values, under similar con-
ditions, are available. The p and (1 —p) quantiles (those points such that
100p % and 100(1 — p) % respectively of sample values fall below them) are
determined and denoted by y,,, and y,, _ . The median y,, is also determined.
The transformation is y* where 2 is the solution of

(i@)i n (M)l -9
Von Vo

A suggested choice for p is 0.01. (It is usual to exclude the solution A =0.)
Now, let us consider a situation in which a linearising transformation on the
dependent variable might be appropriate. If the dependent variable y is a
- proportion (or percentage), then its values will be constrained to lie between 0
and 1 (or 0 and 100). Thus, a relationship between y and any independent
variables is unlikely to be linear as a linear relationship would not naturally
give values constrained to lie between two limits. Consequently, either a
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nonlinear model must be used or the proportion must be transformed to a new
variable which, potentially, would be able to take values anywhere within the
range(— o0, o0). One such transformation, the probit transformation, replaces
y by z where zis given by

b(z)=y

The original use of this transformation was in connection with toxicological
investigations. A certain dosage was given to a set of animals and the
proportion killed was recorded. This was repeated at dosage levels
dy,d,,...,d, giving the proportion killed as p,,p,,...,5,. A possible
theoretical model relating the proportion killed p, to the dosage 4, is

a+bd; i 5
O s e

e S2m

Thus, if ®(z;} = p,, i.e. the probit transformation is applied to the ps, then this
would suggest the model

z;=a+ bd; +e (68)

which is a linear regression relationship between the transformed proportions
and the dosages. Unfortunately, the transformed variables do not have
constant variance. The variance of z; is

pil —py)

r[ ‘ ,]
i \/ﬂ

where 7, is the number of animals which are given dosage d..

The extension of equation (68) to a multiple regression model would be
achieved by measuring other variables (besides dosage) which might affect the
response of the animal. For instance, weight (w) might be included to give the
relationship

z;=a+bd, + cw; + ¢

In general, the probit model may be used to transform any proportion which is
based on a count of the number of occurrences of a particular phenomenon
against the number of opportunities that phenomenon had to occur. However,
itis important that the outcome at each opportunity is independent of previous
outcomes.

An alternative to the probit transformation is the logit transformation. For
the logit transformation, the transformed variable z is given by

;= }Oge (]_‘f_lp;_)

and the variance of z, is given by
1
ripl—p))
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The logit transformation has the advantage over the probit transformation of
being, computationally, a simpler function to deal with. Furthermore, the
model z; = a + bd, + ¢, implies the theoretical relationship

1
Pi=mmj

the logit model, which is mathematically easier to handie than the probit
model. A sketch of the logit model is given in Figure 18.

Fig. 18. Logistic curve.

with both the probit and logit transformations, the variance of the
transformed variable is a function of p, and, hence, of the unknown parameters
a and b. Thus, it is not possible to calculate the weights w;, as defined in
Subsection 1.3.3, without knowing @ and b. Various approximate methods
exist for overcoming this problem, such as using first estimates of @ and & to
calculate the weights, then estimating @ and b by using weighted linear
regression as described in Subsection 1.3.3, using these new estimates of aand b
to recalculate the weights, and so on. However, in these circumstances, the
method of least squares differs from the more general method of estimation
called maximum likelihood estimation. Fitting a probit model by maximum
likelihood estimation is described in Finney (1964). However, the computer
package GLIM (Baker and Nelder (1978)) enables maximum likelihood
estimates to be computed for unknown parameters in logit models and probit
models, as well as many other linear models.

3.3.3 Box-Cox transformations

Box and Cox (1964) suggested the transformations
el

z= (A#0)

z=log,y  (A=0)
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to help satisfy the requirements of normality, constant variance and additivity,
when fitting linear models (such as model (33), for example). The suggested
procedure is to choose a particular value of 2 and to calculate the residual mean
square ¢* (given by equation (39) for model (33)) using the transformed
variable z as the dependent variable. Then, the quantity L,(4) is calculated by

L()=(n—k— 1)((%) __il log, y; - 7log, &2) (69)

By varying A and repeating the above procedure, a graph of L,(4) plotted
against A may be produced. An example of such a graph is shown in Figure 19.

Ly W)

T T T T
-t o 1 i

Fig. 19. Box-Cox transformation.

The best choice of 4 is taken to be the value which maximises Ly(2).
However, if 2=0 is the best choice, then log, y is taken to be the best
transformation.

There will be some trouble with these transformations whenever it is possible
for y to be negative. An alternative set of transformations

z=(y+']~2)i1_ i
4

z=log,(y + 4,) (4,=0)

(4, #0)

was suggested to cope with this problem. The procedure is again to calculate
the residual mean square 6% with specified values of 4, and /, and then to
evaluate

Lb()“l, '{2) = (n -k = ])((}“1 —1

H

) Z log (y;+4;) — % log, &2)
i=1

The problem now is to choose 4, and 4, to maximise L,(4,, 4,), but this may be
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achieved either graphically or by using some numerical algorithm of
maximisation.

It might be useful to be able to test the hypothesis 2 =/,; in particular,
testing the hypothesis 2 =0 may well be informative. In the case of the simpler
one-parameter transformation, a 100a %, significance test would reject the
hypothesis 4 = i, whenever

2(Lb(;'max) - Lb()‘o)) > 12(1: I —a)

where 4_, is the value of A which maximises L,(4}).

Transformations need not only be used for the dependent variable. For
instance, it might be appropriate to transform x,, x,, ..., x, t0 X7, X2, ..., x¢*
to achieve a strong relationship between dependent and independent variables.
Similar methods to those just described may be used but there is also a clever
iterative scheme which cuts out some computation.

Suppose that the correct transformation for x, is thought to be somewhere
near to x7 (r* could be 1 as a preliminary guess). Then, a Taylor series
expansion of x7* would give

— Y477
xy=xT+(r, —r)xilog, x, +-

Thus, if the variables x7 and x| log, x, are included in the regression model,
then the estimated regression coefficients of those variables may be used to
calculate an estimate for the correct power of x,. This estimate of r, would be
given by
estimated regression coefficient of x7i log, x,

estimated regression coefficient of x/

ry

This estimate of r, may then be substituted for r} and the regression may be
repeated to obtain an even better estimate of r , and so on.
Similarly, including

* r * * * *
xixd ., xF and  xfilog, x,, xFlog,x,, ..., X log, x;

in the regression equation would enable improved estimatesof ry,r,,...,r to
be computed from preliminary guesses rt,r%, ..., rf.

A similar technique may be used to determine an appropriate trans-
formation for the dependent variable, but such an exercise should be
undertaken with extreme caution.

3.4 Autocorrelation in Multiple Regression

3.4.1 Possible causes and consequences

One of the assumptions made in Subsections 1.1.2 and 2.1.2 is that the errors,
€,,€,,...,e, are mutually independent. There are several types of dependent
variable for which it would not be immediately apparent that this assumption
had any validity. For example, one such variable, of particular relevance in
hydrology, is the dependent variable which represents the state of a certain
phenomenon in time. The readings y,,y,,...,», may be daily, monthly,
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annual, etc. values of that phenomenon and it is quite likely that y, (for
instance) will be strongly affected by y,. However, before we dismiss all time
phenomena as inappropriate for regression analysis, it is important to consider
the exact implications of the assumption being made.

Theerrorterms e, e,, . . ., e, represent the deviations of the observed values
of y from their true or model (or expected) value. It is these deviations which we
want o assume are independent from one reading to the next. We might
automatically assume that two successive y values are correlated because the
phenomenon being studied gives similar values from one day to the next, but
this does not necessarily violate the required independence assumption. Two
successive days readings may be similar purely because their model values are
similar and they may still have independent error terms. However, when, for
instance, a reading on day 1 which is above its true or model value means that
the reading on day 2 will also be above its model value, then the assumption of
independence is invalid and the errors are said to be autocorrelated.

The joint use of the terms ‘model” and ‘true’ raises an important point. If we
do not get the model exactly right (i.e. the model value is no longer the true
value), then the error terms will contain a component which is the part that the
model failed to explain. It is then quite likely that deviations from the model in
previous observations would give us some idea of the deviation to be expected
in the present observation. This would mean that our independence
assumption was invalid, but the real cause of this would be that the model was
incorrect. Thus, it is important to consider the deviation from the actual model
being fitted and not from some ideal model that we would like to be fitting but
which is unknown to us. In assessing this problem, it might be easiest to
consider whether we have been able to observe all causal variables and whether
they have been sensibly included in the model. If they have not been, then it is
likely that, unless those particular variables happen to remain constant over
the time period studied, the deviations from the model used will not be
independent.

If the methods of Sections 1.2 and 2.2 are applied when the errors are not
independent, then the consequences are similar to those arising from unequal
error variances (see Subsection 3.2.1). In the case of positive correlation
between successive y values (i.e. positive errors tending to be followed by
positive errors and negative errors tending to be followed by negative eIrors),
simple linear regression leads to the variance of the regression coefficient being
underestimated and, to make matters worse, to the estimate of variance (given
by equation (10)) also underestimating o2. These inaccuracies are reflected in
the tests of significance. Typically, with a serial correlation of 0.3 between
successive errors and a sample of # = 11 pairs of y and x values, what should be
a 5 %, significance test will actually correspond to a real significance of anything
between 1.4%] and 14.6 %. The only good result is that the estimates derived
using Section 1.2 or 2.2 are still unbiased when the errors are not independent.

3.4.2 Transformations

To overcome the problem of autocorrelated errors, we will need to assume
some model for these errors. Suppose that y,, y,,. .., ¥, are arranged in order
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of time. Then, we might assume that
e, =pe._,+Hn, (for r=2,3,...,n)
where 1, ~ N(0, 6%) and the s are mutually independent. Thus, each error is
directly associated with the preceding error. This is called a first order
autoregressive process and p is called the first order autocorrelation (or serial
correlation) coefficient.
In such a situation, it would be sensible to modify y,,¥,,...,¥, to

Pi 1= 0% Y2—py1s Y3 = P¥ar---s¥a— PYy-r- Then, by rearranging the
original model (33), we would have the model

k
}’1\/‘]'_92:“\/1_.02‘1'!2 b,xm\/l—pz—ke,\[i—pz
=1

and

k
Vo= PV =a(l=p) + 3 bilx, — pxy,—y) + (e, — pe,_y)
=1
(for r=2,3,...,n)

By defining x, always to be 1, we may eliminate the need to retain the separate
constant term a. The coefficient b, will serve the same purpose and we may now
omit terms involving a from the above equations.

If we now define Y, Y,,..., Y, and X, X,,..., X, to be

Y1=y1\/1_92 X=X, 1—p?

Y,=y,-"py,._1 Xl.rle.r_pxl,r—l (forr=2,3,...,n
and I=1,2,...,k)

and

then our model will become
k
Y, = ZbJXt.i"'W,- (fori=1,2,...,n)
=1

where w,~ N(0,a2). This latter step assumes that the phenomenon being
studied has been observed for a long period of time. If this is not the case, then
Y, should be ignored and only ¥,,Y;,...,Y, should be used.

The regression coefficients by, b, ..., b, may now be estimated using the
standard methods of Section 2.2 because w,, w,, ..., w, are independent.

Clearly, p plays a crucial part in this transformation and it may not be
obvious what value it should be given. A value frequently chosen is p = 1, which
implies that the differences of successive values are included in the model and
that Y, disappears from the model. However, this does not necessarily confirm
its use in every situation.

One suggested method for choosing pis to apply the basic method of Section
2.2 to calculate the residuals é,, é,, . . ., é, using equation (38). An estimate of p

is then given by
. 1" .
P=(n g i;l eiei+l)/az

where 672 is given by equation (39).
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A more complicated model for the errors is
€& =P8 -1t pe 3+ -t pe i,

where again 5, ~ N(0, 62) and the 5,s are mutually independent.

If p,, p,,...,p,are known, then the previous method may be extended by
defining Y, and X, to be
Yr =yr-"_p1yr—l - p?_yr—?_ - = ppYr—p
and
Xip =Xy, = P1 X = PaXpy g = PpXir—p
However, it is extremely unlikely that p, p,,.. -, p, will be known.
A straight forward method which allows p,, p,, .. ., p, to be estimated from

the data is, first of all, to apply the basic method of Section 2.2 to the data and
to estimate the residuals é,,¢,,...,é,. From our model, we know that

Ye=a+b1x  +byxy ,+ -+ bx, e,
=a+bx, ,+bx,, + - +bx,,
TP 1€ TP+ -+ pe,_, 1,
Yooy =a+ b Xy, +byxy -+ bx

Tt P, st -tpe, 0, etc.
Thus, by defining additional variables x,, ,, X, 15, ..., Xy 4+, 10 be
Nis 1.0 = €
€i_s

Npp2,i=
' (fori=p+1,p+2,...,n)
Xg+pi =éi—p

and substituting é,_ fore,_ (forr=1,2,...,pand i=p+1,p+2,....nin
the previous formula, we may perform the basic method of Section 2.2 on the
n—p observations y,.,, y,.;...,», and the independent variables
Xy, Xg,. .., Xy, pin order toestimate p, p,. .. ., p,. Although thisis not the best
of methods available, it has the advantage that it is conceptually simple to
grasp and easy to implement.

Although strictly out of place in this section, it is convenient to mention now
the problem frequently encountered in hydrology that some of the independent
variables are previous values of the dependent variable. Thus, in these
circumstances, the model would really be

Yi=a+by_ byt by,
Fhy Xt by Xyt b Nt e

It may be shown that, for large samples (large »), the estimates of
a, by, by, ..., b, derived by the application of the basic method of Section
2.2, have similar properties to those of the estimates of regression parameters
in the conventional model (33), provided that the errors ¢,,¢e,,...,e, are
independent. In small samples, these estimatesof @, b, b,,.. ., b, , are biased.
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However, even for large samples, if the problem of autocorrelation arises,
then the estimates of b,,5,,...,b,,, begin to become suspect. In particular,
they are no longer consistent or unbiased estimates. As the estimated residuals
are also inconsistent, there is little opportunity for using them to correct for
autocorrelation by the methods described previously. Also, in the case of a first
order autoregressive process for the errors, the estimated residuals will show
less autocorrelation than is actually present. Thus, certain tests which are
discussed in Section 4.3 will underestimate the effect of autocorrelation, i.e.
they will be biased towards accepting the hypothesis of independent errors.
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Chapter 4

AFTER A MULTIPLE REGRESSION
ANALYSIS

4.1 Some Preliminary Checks
4.1.1 Examining the form of the regression equation

Before making use of the fitted multiple regression model and before carrying
out any elaborate checks on residuals (see Section 4.3), it is as well to apply a
few simple checks to the model itself,

The effect of some of the independent variables on the dependent variable
may be known. For example, it may be that a rise in the value of one of the
independent variables produces a rise in the value of the dependent variable, If
this is the case, then a check should be made that it is reflected in the regression
equation by the regression coefficient associated with that independent
variable being positive. A negative regression coefficient would suggest that a
rise in the independent variable produces a fall in the dependent variable.

‘There will be exceptions to this pattern which will usually occur when there
are strong interrelationships between some of the independent variables.
Because of the nature of the phenomena being studied, a change in value of one
independent variable may imply a change in values of the other independent
variables. In this situation, the joint effect of the highly related variables on the
independent variable must be considered. Although this may be laborious, it is
particularly important as the existence of highly correlated independent
variables may lead to problems and inaccuracies in inverting the matrix S__(see
equation (35)) which, consequently, might lead to a nonsensical fitted regression
meodel (see Section 4.2).

If one of the variable selection methods outlined in Section 2.3 has been
used, then it would be wise to consider whether a sensible set of independent
variables has been included in the final fitted regression model. Again, it is
possible that strong interrelationships in the independent variables may have
led to the surprise omission of a variable, but this omission should have been
balanced by the inclusion of certain variables with which it is highly correlated.

However, it is as well to approach the assessment of the fitted model with
scepticism. As well as the possibility that certain of the assumptions outlined in
Subsections 1.1.2 or 2.1.2 may have been violated, the actual recorded
data might be nonsensical. For instance, the variables measured, or the
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observations taken of those variables, may not accurately reflect the
phenomenon that they were intended to record. This may have been caused by
instrument inaccuracy, error in observation or simply the fact that the
phenomenon was not accurately monitored by the equipment. Assessing the
actual physical meaning or implications of the fitted model is one way of
assessing the credibility of the data and, hence, the model,

One final possibility is that the calculations required to establish the fitted
model may have been performed incorrectly. Even when an apparently
trustworthy computer program has been used, certain hidden restrictions (such
as array space) may have been violated, certain operating instructions
misinterpreted or a hardware (or software) malfunction may have gone
undetected.

4.1.2 Examining the behaviour of the regression model

Having carefully examined the fitted regression model, the next step is to
consider how it behaves when in use.

[f we put observed values of the independent variables into the fitted model
(44), then we may calculate predicted values of y using

}7;=°?+B|(x1i_f1)+Bz(xzf_):'2)+ + Bl — %)
(fori=1,2,...,n

which correspond to the observed values of y (denoted by y,,y,,..., 7). A
graph of ¥, plotted against y, will then give an immediate visual impression of
the performance of the model. At the same time, it will give the opportunity to
detect gross errors in the fitted model. Ideally, the graph should be exactly a
straight line which passes through the origin and has a slope of 45°, but,
usually, the plotted points will scatter about this line. If the plotted points
scatter about some other line (i.e. one which does not pass through the origin or
which has a slope other than 45°), then some error in calculation must be
suspected. Calculating the quantity ¥7_,(F;— ;) gives a direct check on
previous calculations since this should always be zero (except for rounding
error). However, this is clearly not a particularly powerful check.

Having considered the behaviour of the model for the observed values of the
independent variables, it is advisable to examine its performance over the range
of values for which it might be used. For this purpose, it is useful to have
available other data which have not been used in estimating the model (possibly
deliberately left out), but nevertheless consist of values of the dependent
variable together with associated values of the independent variables. A graph
of predicted y plotted against observed y for these new data will again give a
rapid visual impression of the performance of the model.

When examining the predictive ability of the model, consideration should be
given to any natural constraints that there might be on the dependent variable.
For instance, many hydrological variables, such as river flow, by their nature
must be positive. Thus, a model which predicted negative values for riverflow
under unexceptional conditions of the independent variables must be treated
with extreme caution, if not completely discarded.
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4.1.3 Stability of the model

Having derived a fitted model for a particular set of data, the investigator may
be left with the uncomfortable feeling that, with another set of data from a
similar situation, quite a different fitted model might be generated. The concern
is that, for a particular set of data, the model only provides an approximation
to the data rather than an explanation of the data. In such a situation where the
model has no ‘physical meaning’, it is helpful to see the possible fluctuations
that might occur in the fitted model in other ways than just in terms of the
variances of estimated coefficients.

Again, the technique of dividing the data (or ‘data splitting’} is of value. In
Subsection 3.1.2, it was suggested that the stability of the model may be
investigated by splitting the data into groups according to the value of one of
the independent variables. In Subsection 4.1.2, it was suggested that it may be
informative to split off some data and not use them in estimating the model, but
use them instead to compare values of y predicted by the model with observed
values of y. Another possibility s to split the data randomly into groups and fit
the model separately to the different groups of data. From the variations in the
different fitted models, an immediate idea may be gained of the stability of the
model and, in particular, of which are the most stable factors.

4.2 Problems of Numerical Stability

4.2.1 Numerical methods used in regression

In Subsection 2.2.1, the basic problem of estimating §,,8,,...,8, was
presented as the problem of solving the equation
SI)' = Sxxﬁ

The solution that was suggested involved finding S_', the inverse of S_,. There

are a variety of numerical procedures available for achieving this, some notably
more successful than others. A popular method used in several regression
computer packages is the Gauss-Jordan elimination method.

However, there are alternative ways of determining § which have gained in
popularity in recent years. If we define the column vector Y to be

n—J
Y= Vo= ¥
Y=V

where y,, ,,...,y,and y are as defined in Subsection 2.2.1 and, furthermore,
we define the matrices X and e to be

X=X XX, X — X, €

X, — X, Xi,—X Xy, — X e

12 1 X2z 2 k2 L 2

X= . ) ) and e=

Kin =Xy Xz, — X, Xen — Xy €,
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then the model
Y=Xf+e

is equivalent to model (34). The matrix S,, is equal to XY and the matrix S, is
equal to X'X. Hence, we can see from equation (36) that § =(X'X)"'X'Y.
However, if we define the matrix Z to be Z=XU""' where U is an upper
triangular matrix which is chosen so that the matrix Z satisfies Z'Z = A where
A is a diagonal matrix, then f is given by

B=(UZZU)"'XY=U""A"'ZY

The matrices U and Z may be determined by a numerical procedure called
‘modified Gram Schmidt orthogonalisation’. Also, we see from equation (37)
that Vp = 62S_!and, thus, V s the variance covariance matrix of the estimates
B, is given by

Vy=aX U ATHU) Y

Hence, we have UVU’ = A~ ! and, since A isa diagonal matrix and Uand U’
are upper and lower triangular matrices respectively, this allows the elements of
V; to be found by back substitution.

An alternative approach makes use of a series of orthogonal transform-
ations on X to obtain the decomposition X = QR where the first & rows of

R,,, are upper triangular and the last n — k rows contain all zeros, and
Q'Q=1,,,, the n x n identity matrix. From the equation X = QR, we have
R = Q'X=[3] where S is a k x k matrix and is upper triangular.
Now, we have
f=XX)"'XY
=(R'QQR) 'RQY
=(R'R)"'R'QY

=(8'8)"[S'O'1QY

— S - I(SJ) -1 [SIOI]QIY
= S_I[Ik <O01QY
=SV,

'Y = vl
Q - V2

and V, is a k x | matrix and V, is a (n — k) x | matrix.
For further details of computational techniques associated with multiple
regression, the reader is referred to Seber (1977).

where

4.2.2 The relative merits of the various numerical methods

There have been several large scale numerical investigations which compare the
performance of the wide selection of computer packages that implement the
methods discussed in Subsection 4.2.1, as well as many other methods.
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Important papers in this area are Wampler (1970), Chambers (1973) and
Beaton, Rubin and Barone (1976).

Most investigations use ‘worst cases’ data so as to test the program 1o its
limit. The usual abuse is to make X'X nearly singular and this immediately
leads to problems for elimination methods which are attempting to find its
inverse. A useful measure of the ‘near singularity’ of a matrix A is the P
condition which is defined by P(A) = /u where 1 is the numerically largest
eigenvalue of A and p the smallest. Typical ‘worst cases’ data have P(A) ~ 10'%.
In these adverse conditions, the methods using Gram Schmidt orthogonalis-
ation or Householder transformations, that is, the last two methods of
Subsection 4.2.1, consistently turn out to be the best. One conclusion which
seems to be common to all methods is that scaling the x variables so as to
arrange for the diagonal terms of X'X to be unity does not appear to lead to any
improvement in performance. However, no one seems to question the
undoubted wisdom of ‘subtracting the means’ and, thus, of working with the
model in the form of model (34) (as shown in Subsection 2.2.1).

A necessary condition for the satisfactory performance of the two successful
methods mentioned above is that all inner products are accumulated using
double precision arithmetic.

4.2.3 Detecting the failure of the numerical methods

Having performed a regression analysis, the points mentioned in Section 4.1
will help in detecting whether the ‘correct’ estimates of the regression
coeflicients have been determined, i.e. whether the correct solution of equation
(35) has been found. There are a few additional precautions which might be
taken.

Assuming the calculations are to be performed using a computer, a first step
might be to run some test problems where the regression coefficients are
known, so as to ensure that the computer program is working correctly. At the
same time, it may be arranged for the condition of X'X to be poor.
Alternatively, a set of data pubiished by Longley (1967) appears to give trouble
to many of the weaker programs and this data may be tried instead.

A second step might be to monitor the condition of the matrix X’'X and,
hence, to anticipate trouble with a particular regression analysis when P(X'X)
is large.

A third step might be to perform the regression analysis several times with
the scale of the x variables altered each time. Interchanging the identity of the x
variables (for example, interchanging x, and x,) is a useful device for detecting
both elementary mistakes and obscure ones which might otherwise EO
undetected.

Another useful precautionary measure might be to calculate the vector of
residuals, €=1[é,,é,,...,6,) =Y — XB (where é,,é,, .. .,€, are defined by
equation (38)), and then to check that X'é = O, as should obviously be the case.
In non-matrix terms, this is equivalent to checking that Yo (x,,—x)é =0
(for r=1,2,3,...,k).

Finally, the numerical stability, as well as the ‘logical’ stability of the
calculations might be examined by perturbing the data and reperforming the
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regression analysis. Thus, for example, suppose that the variable x, can only be
recorded to one decimal accuracy giving readings of 12.1, 10.8, 6.9, etc. Then,
these readings may be altered to 12.05, 10.75, 6.85, etc. or 12.15, 10.85, 6.95,
etc. and the data re-analysed. If the resulting analysis is markedly different
from the original analysis, then this may suggest numerical instability. At the
same time, this will give the analyst a good idea of the imprecision inherent in
his conclusions which has resulted from the imprecision of his original data.

4.3 Analysis of Residuals
4.3.1 Plotting the residuals

Use of the n residuals €,,é,,. . .,¢, has already been described in Subsection
4.2.3. Their definition, which is given by equation (38), shows that they are the
differences between the observed values of the dependent variable y and the
predicted values of y which have been obtained by using model (34) with
the least squares estimates of the unknown parameters inserted in place of the
corresponding parameters in the model.

The main benefit to be gained from studying these residuals is a knowledge of
the adequacy, or more likely the inadequacy, of the assumptions made in
multiple linear regression. The terms e, e,, ..., e, are assumed to have zero
mean and constant variance o2, to be normally distributed and to be mutually
independent. Consequently, we will expect similar, if not identical, properties
for é,,6,,...,€,

Thus, as a first step in examining residuals, it will be helpful to form a
histogram of é,, .. ., é,. Let us now consider the features that we would expect
to see, or not to see, in this histogram. Unless there has been an error in
calculation, the mean of é, ..., é, will always be zero. The histogram should
be reasonably symmetric about zero; in other words, there should be no
marked skewness and no strong evidence of bimodality. Also, there should be
few points noticeably detached from the rest of the histogram. Existence of
detached points may suggest the presence of outliers.

To investigate the shape of this histogram further, various statistics may be
calculated from é,,...,é, and these will be discussed in Subsection 4.3.2.
However, a further graphical aid is to use normal probability paper which was
mentioned in Subsection 3.2.3 to plot the cumulative distribution of é,, .. ., €,,.
The resulting plot should give a nearly straight line when the assumption of
normality of e, ..., e, is valid.

The next step might be to plot the graph of €, ..., ¢, against y,,...,y, (as
defined in equation (44)). Ideally, this should produce a graph which is just a
horizontal band of points with possibly a slight bulging towards the middle of
the graph. Variations on this pattern might be: (1) a band of points of more or
less uniform width but which is not horizontal, i.e. it may be rising, falling or
curved, or (2) a band of points of non-uniform width. )

The first pattern variation usually suggests either an error in calculation or
that the model is not adequately representing changes in y. This problem might
be overcome by either transforming y or including some polynomial terms of
Xy, -+ -2 X, in the model.
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The second pattern variation usually suggests that the variance of e, ..., e,
is not remaining constant, This may be caused by the variability ir y increasing
(or decreasing) as y increases (although the problem of non-uniform density of
points which was mentioned in Subsection 3.2.2 should be considered in these
circumstances). Also, this pattern may be caused by increasing errors of
measurement, inclusion of certain ‘bogus’, ‘contaminated’ or spurious results,
or the physical process studied being different for different values of y.
Rectification may be achieved by transforming the dependent variable p,
eliminating certain results or fitting separate models to different portions of the
data. :

When there is some time sequence associated with y,,...,y,, it is often
helpful to plot é,, . . ., ¢, against time or sequence number or, at least, to plot
them in the same order as the ys were measured or recorded. This is particularly
helpful when time is involved and it has not been included as an independent
variable. Again, a horizontal band of points should be expected from this
graph but deviations of the type described for the previous graph may occur.

The first pattern variation might indicate that time should have been
included as an explanatory variable in the regression equation. The second
pattern variation might suggest that the variability of the dependent variable is
associated with time; for example, it might suggest that results taken 50 years
ago are less precise than results taken nowadays.

Similarly, plotting €,,...,é, against values of each of the independent
variables in turn should give a horizontal band of points. A non-horizontal
band may suggest that the effect of the independent variable on y has not been
fully explained in the model and that, possibly, a polynomial term needs to be
included in the model. A widening band may suggest that the variance of the
dependent variable is not constant, but possibly related to the independent
variable plotted.

Finally, it might be helpful to plot a graph of é,,...,¢, against either an
independent variable which has so far been omitted from the regression
analysis, or a variable that has been thought to be not worth including, or a
variable which has been omitted as a result of a stepwise regression calculation.
This will help to check for constant variance and that there is no association
between the variable plotied and the dependent variable y.

4.3.2 Some tests on the residuals

Exact tests of significance on the residuals tend to be cumbersome because the
distribution of the residuals is not simple to deal with. Provided that the model
used (i.e. model (34)) is correct, the residuals é; will follow a normal distribution
with zero mean. However, the residuals do not have constant variance and they
are not independent. In fact, using the notation of Section 4.2, the variance
covariance matrix of é,,¢,,...,&,1s a*(I__, — X(X'X) " 'X").

Anscombe (1961) describes slightly modified versions of the coefficients of
skewness and kurtosis which enable an assessment to be made on the
‘normality’ of the residuals. However, it has been shown that the test of Shapiro
and Wilk mentioned in Subsection 3.2.3 may be applied to the residuals
é,,...,6,foratest of normalityof e,, ..., e,. Some of the other tests mentioned
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in Subsection 3.2.3 (for example, tests for outliers) may be applied to él, sy
although they are not strictly valid and must be used with caution since
é,,...,é, are not independent and do not have constant variance. However,
with a plot ofé,,...,é,showing a markedly detached point, a rough idea of its
significance may be all that is required.

For testing whether the variances of e,,...,e, are constant, a suggested
procedure is to divide the data into two groups with an equal number of
"observations in each. The residual sum of squares is then calculated for each
group and their ratio is formed. When the assumption of equal error variance
of observations in the two groups is valid, this ratio will follow the distribution
F o2 x—1m2-x-1- Thus, for example, to test for an increase in variance with
increasing y, the smallest n/2 values of y would form group 1 and the remaining
n/2 values would form group 2. (When #» is odd, the middle observation would
be discarded.)

Residual
ES *
o Time
* * {or independent variable)
New Sequence + + + +

Fig. 20. Plot of residuals and associated signs.

There are scveral non-parametric tests for detecting changes from a
horizontal band in a plotted sequence of readings. The test which will probably
be most useful replaces the plotted sequence of points by their sign, as shown in
Figure 20.

When there is no trend in the residuals, there should be a random jumble of
+sand —s. However, when a trend is evident, there will be a series of runs of
+sand —s. The test involves counting the total number of these runs, r. (In the
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example above, r is equal to 3.) If there are n, +s and », —s in the whole
sequence, then the test statistic U is given by

r—1—=2nn,/(n, +n,)

2nyny(2n,ny —ny —ny)
(n, +n)?(n +ny—1)

and U~ N(0, 1), approximately, whenever the sequence is a random jumble of
+s and —s.

Thus, for a 100a %, significance test, the hypothesis of a random jumble of
+s and —s would be rejected whenever |U|> Z(2/2). Rejection of the
hypothesis would suggest that the plot of points did not form a horizontal
band.

4.3.3  Other residuals

The residuals that have previously been used are correlated and have differing
variances. Consequently, several attempts have been made to derive pseudo
residuals which have better properties and this has led to the use of
standardised residuals, BLUS residuals, recursive residuals, etc.

If V,is the ith diagonal term of the variance covariance matrix of the
residuals, then é,./\/z will have variance equal to 1. Using the residual mean
square to estimate ¢*, the residuals e“,./\/ﬁ are called standardised residuals.

BLUS tesiduals require the matrix X (as defined in Subsection 4.2.1) to be
partitioned into

X,

X,

where X, isa k x k matrix and, hence, X, isa (n — &) x k matrix. The A non-zero
cigenvalues of X (X'X) 'Xj are denoted by 13,43,...,4; and the corres-
ponding normahsed eigenvectors are denoted by z,,z,,...,z,. Thus,
X (X'X) X[z, = A2 (for r=1,2,..., k). If the vector of residuals
é, €,
is partitioned into two parts
élf él

where &, contains k rows and, hence, &, contains n —k rows, then the BLUS
residuals are defined to be

)
i, =€, —xlxgl[ > 0 +'l zrz;:‘eo

r=1

These residuals are intended to display the discrepancy between the last (n — &)
observed y values and the fitted model; in other words, they have the same
purpose as &,. The sum of squares of the (n — k) BLUS residuals, i}, isequal to
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the sum of squares of the original residuals, }7_, e, However the (n — k) BLUS
residuals are uncorrelated and have constant variance g2

The problem in using these residuals is to decide on a partition of X. By
reordering the data, any & of the »n readings may be arranged to correspond to
X, As the readings associated with X, are effectively ‘lost’, i.e. no residuals
corresponding to these values are produced, some care must be exercised in the
selection of X,.

When the intention is to use the BLUS residuals to investigate an increase in
variance with increasing y, it might be sensible to omit the middle observations.
H the middle observations are omitted, leaving m readings at the beginning and
m at the end of the sequence of observed y values, then the ratio of the sum of
squares of BLUs residuals associated with the first » readings and the sum of
squares of those associated with the last m readings should follow an F
distribution with m and m degrees of freedom whenever the assumptions stated
in Subsection 2.1.2 are valid.

Alternatively, a plot of the BLUS residuals may be informative provided that
the partition of X is performed sensibly.

4.3.4 Autocorrelation

Possibie causes of e,,...,e, being serially dependent were discussed in
Subsection 3.4.1 and some ways of overcoming the problem were suggested in
Subsection 3.4.2. However, first of all, it will be necessary to detect whether
such a phenomenon exists and not surprlsmgly, most procedures to achieve
this make use of the residuals, é,,...,é,.

The non-parametric test descrlbed in Subsection 4.3.2 will help to examine
the serial dependence of the residuals. Obviously, it will only be sensible to
investigate the possibility of autocorrelation when y, y,,...,y, represent a
series of readings, in some sense. For example, they may represent a sequence
of readings in times (such an annual rainfalls) or y, may have been recorded
first of all, then y,, then y;, etc. Suppose that the corresponding residuals
€,,6,,...,6,arereplaced by theirsigns(e.g. + + — — + —— ++ — —etc.).
Then, autocorrelation between y,,...,», might lead to a non-random
sequence of +s and —s from the residuals which would be detected by the
‘runs’ test mentioned in Subsection 4.3.2. However, it should be remembered
that there may be other causes of a non-random sequence of +s and —s from
the residuals, for example, by an incorrect model having been fitted.

The most frequently used autocorrelation test is probably the
Durbin—Watson test. The test statistic « is given by

d= z“: (éi_éi-l)z/i é
i=2 i=1

This statistic exploits the fact that E(é,—¢é,_,)* = E(})+ E(é}_,)—
2E(é€;_)).

The right hand term refiects the correlation between successive residuals.
Consequently, 4 will be small when residuals are consistently positively
autocorrelated, intermediate when there 1s no autocorrelation and high when
the residuals are negatively autocorrelated. However, the warning given in the



104 MULTIPLE REGRESSION IN HYDROLOGY

previous paragraph for the runs test also applies to the Durbin—Watson test. If
all the assumptions made in fitting a regression model are valid, then the
residuals should not display a notable autocorrelation. Thus, detecting
autocorrelation in the residuvals indicates that something is amiss. It does not
necessarily follow that the cause is autocorrelation in the y readings as an
incorrect or incomplete model may have been used.

The variance covariance matrix of the residuals given in Subsection 4.3.2
depends on X, the matrix of values of the independent variables. It is therefore
not surprising to learn that the distribution of 4 also depends on X. To
overcome this problem and provide a test which may be easily applied, Durbin
and Watson evaluated bounds (d,, 4,) between which, for a given significance
level, the appropriate significance point must lie regardless of X. The suggested
test procedure is to reject the assumption of independence in favour of positive
autocorrelation when d < d,, draw no conclusion when d, < d < d, and accept
the assumption of independence when d > d,.

This provides a one tailed test of positive autocorrelation versus
independence. To investigate the existence of negative autocorrelation, the
procedure is to replace d by 4 — din the above and for ‘positive autocorrelation’
read ‘negative autocorrelation’. Tables for 4, and d, are given in Durbin and
Watson’s original paper (1951) and are reprinted in several regression books,
for example, Theil (1971).

One of the difficulties of applying this test is that the value of d frequently
falls in the region (d,,d,) and thus the outcome of the test is inconclusive.
Durbin and Watson give some guidance for obtaining conclusive results in this
situation. However, other workers have shown that when the independent
variables are ‘smooth’, the upper bound 4, provides an approximation to the
true significance point. {A ‘smooth’ variable is defined to be one whose
consecutive values show small changes compared with the total range of the
variable). A summary of various approximations to the distribution of 4 which
may help when the test is inconclusive is given by Durbin and Watson (1971).

An alternative test of autocorrelation may be derived using the BLUS
residuals, @, = [#, ,, 4, 5...., 4, . The test statistic Q is given by

1 n—k—1 i . )
Q=(m i; () 144 —‘”1,1-)2)/02

where 6% is the usual residual mean square given by equation (39). The
distribution of Q is tabulated in Theil (1971). Alternatively, for n —k > 60, a
satisfactory approximation is to assume that Q follows a normal distribution
with mean 2 and variance 4/(n — k).

Phillips and Harvey (1974) derive an autocorrelation test which is simpler to
calculate than the BLUS residuals test but both of these tests have poorer power
than the Durbin—Watson test in which an approximate significance point is
calculated when d, <d < d,,
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Chapter 5

SOME EXAMPLES

5.1 An Example of Fitting and Comparing Several
Regression Lines

The source of the data used in this example is Report No. 73 of the Institute of
Hydrology by M. Robinson (1980). This report examined the effect of pre-
afforestation drainage on the streamflow and water quality of a small upland
catchment, the Coalburn catchment, located approximately 40 km north-east
of Carlisle, Table 10 of the report gives rainfall (R) and run-off ({) in
millimetres, for winter ( October-March) and summer (April-September) over
a five-year period prior to drainage work and over a similar period after
drainage.

Table 2 Rainfall and runoff on the Coalburn catchment

Winter Summer
Period R 0 % Runoff Period R 4] % Runoff’
Pre-draining
1967-8 926 729 78.7 1967 669 343 51.2
1968-9 494 455 92.1 1968 632 310 49.1
1969-70 571 446 773 1969 579 259 44.7
1970-1 652 599 91.9 1970 575 305 530
1971-2 542 465 85.8 1971 457 186 428
Mean 638 539 84.5 Mean 582 283 48.6
Post-draining
1973-4 542 480 88.6 1974 497 235 473
1974-5 794 636 80.1 1975 642 370 57.6
1975-6 546 478 87.5 1976 449 199 44.3
1976-7 622 593 95.3 1977 584 315 53.9
1977-8 763 704 92.3

Mean 653 578 88.5 Mean 543 279 51.4
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Fig. 21. Coalburn catchment data.

Figure 21 gives a plot of the whole data set. From this plot of the data we might
tentatively conclude that:

A linear regression model for relating ¢ and R seems reasonable for each
of the four groups of data.

There is a difference in position (but not slope) between the winter and
summer regression lines.

There is less scatter about the line for the summer data.

We would probably also observe that:

The winter data cover a larger span of values of R.
There is a shorter series of values in the summer post-drainage category
than in the other three categories.

Although not strictly necessary as a step in the analysis of this data set, let us start
by fitting a straight line to just the winter pre-drainage data. Using the notation
of Section 1.2, we take rainfall to be the independent variable, x, and runoff to
be the dependent variable y for reasons similar to those advanced in Subsection
1.1.3. The table shown on page 108 gives the various necessary calculations.

Column | gives the values of the initial calculations made on the winter pre-
draining data. From these statistics, the useful intermediate statistics S, ,, etc.
are calculated and their values are given in column 2. The formulae for S, ,, etc.
are given at the end of Subsection 1.2.2. Finally, column 3 gives the most
pertinent statistics in fitting a straight line, namely the intercept and slope
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r=3
¥ x=3191 £=6382 4 =99.34
i=l
Y yi=2694 §=538.8 h=0.6886
im
x?=2153309 §,.=116812.8  S.E.(4)=8219
i=1
Xy, =1799744 S, =804332 S.E.(5)=0.1252
! e8] xy
‘; yE=1512408 S,,=60880.8 d2=1832.4

together with their standard errors. These are calculated from equations (5),
(6), (7) and (8) respectively with the estimate of 62 used in equations (7) and (8)
being calculated by equation (10). S.E.(d) denotes the estimated standard error
of a and is equal to the square root of equation (7) when the estimate for ¢

given by equation (10) has been inserted. Thus we conclude that our fitted
model is

Runoff =99.34 + 0.6886 x Rainfall

Testing the hypothesis a = 0 assesses the evidence to support a ‘straight line
through the origin’ model to relate runoff and rainfall. Referring to the first test
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Fig. 22. 95% confidence intervals on Q.
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in Subsection 1.2.3 the test statistic glven may, in fact, be written as
a/[\/ S.E. (a)] the value of this expressionis 1.21. Using a 5 % significance test
gives t(n — 2,1 — a/2) = 3.18 and hence we cannot reject the hypothesis a =0.
Testing the hypothesis b = 0 assesses whether rainfall has any affect on runoff.
The second test statistic in Subsection 1.2.3 may also be written in the simpler
form &/ [\/ S.E.(h)). Its value is 5.5 and hence, usmg a 59 significance test, we
reject the hypothesis b =0, implying that there 1s some linear association
between rainfall and runoff values.

Figure 22 gives the 95, confidence intervals stated in equations (13) and
(14). Thus, at a particular rainfall value, the outer curves give a 95 % confidence
interval for a single reading of runoff and the inner curves give a 95%
confidence interval for the mean runoff at that rainfall value. All observations
lie comfortably within the outer curves which suggest no obvious outliers.
Indeed, with so few observations, it would have to be a quite exceptional
observation to show up as an outlier.

Fitting the linear regression model to each of the four sets of data separately
gives the following set of summary statistics:

Table 3 Regression lines for the Coalburn catchment data

Pre-draining Post-draining
Winter Summer Winter Summer
a 99.34 —110.11 81.03 —205.04
b 0.6886 0.6743 0.7609 0.8928
5.E.(d) 82.19 74.61 126.75 13.89
S.E.(») 0.1252 0.1271 0.1915 0.0254

é? 18324 416.3 2078.7 14.46

Examining the speculations we made earlier we see from these statistics that it is
apparent that the intercept parameter, g, differs between the winter and
summer data. Furthermore, there is less scatter about the line (62) in the
summer months. In addition, there is a slight suggestion of a higher slope
parameter (b) in the post-draining data. However, the most striking difference
of all, and the most inconvenient, is the very low value of 62 for the summer
post-draining data.
Formally, a test of signiﬁcance on the four ¢? values, using the test of
equality of variance outlined in Subsection 1.3.2, gives M =8.94. With
%%(3,0.95) = 7.81, this suggests that, using a 5% SIgmﬁcance test, we should
reject the hypothesis of equal variance about the line for the four categories of
data. Reference to Figure 21 will confirm just how unusually linear the summer
post-draining data are. If this effect were real then it might well be the most
interesting finding of the analysis, namely that draining has led to runoff being
closely related to rainfall. However, with only four observations one must treat
any conclusions with caution and perhaps even scepticism.
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Computing the analysis of variance table given in Subsection 1.3.2 gives the
following table:

Source Sum of Degrees of Mean square Mean square
squares freedom ratio
Overall regression 281725 1 281725 238
Difference in positions 202948 3 67649 57.2
Difference in slopes 924 3 308 0.26
Residual 13010 11 1182.7
Total 498 607 18

Formally, we would accept a hypothesis of equal slopes and reject a hypothesis
of equal intercepts, the latter being significant at the 0.1 level. Thus our
suspicion about the intercepts is confirmed but the difference in slopes is not
significant. Referring back to the table of slopes and intercepts we see that the
difference in intercepts relative to their standard errors is much greater than the
difference in slopes relative to their standard errors. Any conclusions from the
analysis of variance table are made on the assumption of equal variance about
the line in the four sets of data but it would seem unlikely that the degree by
which this assumption is violated would greatly alter the conclusions.

Further comparisons would be of interest, in particular to establish whether
there is a change in slope between pre- and post-draining data. To take the
analysis further, it helps to see that the model for these data can be written as a
multiple regression model similar to equation (34). The model used so far is
equation (23) in Subsection 1.3.2 and to keep the complexity to a minimum, let
us suppose that the data had only consisted of two groups with two pairs of
values in each group. Equation (23) becomes

Y1 10 x,; 0 a, €1
Yia | _ 10 x5, O a; + €12
Va1 01 0 x5 b €31
Va2 0 1 0 xpilh €2

which is of the form Y = Xp + eand, as demonstrated in Subsection 4.2.1, this
is equivalent to model (34). Thus significance tests on ay, a,, b, b, may be
conducted using the general linear hypothesis results of Subsection 2.3.1. In
general, provided that the model is linear in the unknown parameters and that
the error term is an additive component, it will usually be possible by using
dummy variables in conjunction with ‘real’ variables to write the model in
multiple regression form. However, because of the general nature of the test
statistic (equation (48)), it is often unnecessary to actually derive the multiple
regression version of the model in question. This will be apparent from the
analysis in the remainder of this section. Let us now use this approach to
compare the values of a and b for pre-draining data with those for post-draining
but, at the same time retain the winter/summer division in the data. This will
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allow us to focus on the pre/post draining division in its effect on @ and b but, at
the same time, acknowledge that there might be a difference (probably in a)
between the winter and summer regression lines. We need to compute two
residual sums of squares, the residual sum of squares R, fitting a separate
regression line to each of the four groups of data (=13010 from the previous
analysis of variance table) and the residual sum of squares R, computed by
assuming the hypothesis to be true. The hypothesis, H, is that @ and b are the
same for pre- and post-draining data (but possibly different for winter and
summer data). Merging the pre- and post-draining data produces a set of data
with just two categories, winter and summer. Applying the same type of
analysis as we did with four categories gives an analysis of variance table with
residual sum of squares, R, = 17416.68 (R, must be > R). The test statistic for
H, given by equation (48), is [(17416.68 — 13010)/4]/[13010/(19 — 8)] =0.93
which should follow F, ,, if His true. The 5% point of F, |, is 3.36 and hence
we must accept H. ‘

It is enlightening to approach the same test trom a slightly different angle.
Let us analyse the winter and summer data separately but with the same
objective as previously, to decide whether a and b are the same for pre- and
post-draining data. From Table 3, we know that the residual sum of squares,
fitting separate regression lines to winter pre- and post-draining data, is
1832.4 x 3 +2078.7 x 3 =11733.3=R. Combining pre- and post-draining
data and fitting a single regression line to the winter data give a residual sum of
squares of 13972.3 = R,,.

Our test statistic for A is now [(13972.3 — 11 733.3)/2]/[11 733.3/(10 —4)]
=0.57 which should follow F,,. Again we accept H. Repeating the
calculations for the summer data gives R=416.3x3 +14.46 x2=1277.82
and R, =3444.38. Our test statistic is now [(3444.38 ~1277.82)/2]/
[1277.82/(9 — 4)] = 4.24 which should follow F, ;. The 5% point is 5.79 and
hence using a 59 significance test we must accept H, but the 10 % point is 3.78
at which level we would reject H. Consequently we cannot be very sure about
the validity of H. There might be some grounds for supposing that in the
summer months, the pre- and post-draining regression lines differ. This
difference in conclusions for summer and winter is due to a large extent to the
much smaller variation about the line in summer data (R = 1277.82 for the
summer, R = 11733.3 for the winter).

Note that adding the two R values 1277.82 4+ 11733.3 =13011.12 gives
(except for rounding error) the value of R (=13010) for the whole set of data
and adding the values of R, 13972.3 + 3444.38 = 17 416.68 gives the value of
Ry, tor the whole data set. Thus we can imagine combining the results of the
summer and winter tests into a single significance test. However, intuition
should not be relied upon too heavily in this area as this additive property only
occurs if certain conditions about the matrix X are satisfied, namely that
certain columns of X are mutually orthogonal.

So far, we have only simultaneously tested whether both a and b differ
between the pre- and post-drainage data. To emphasise the extent to which
differences in regression lines may be examined, suppose we pursued the hint of
a difference in pre- and post-draining regression line in the summer months. Is
the difference primarily in the intercept a, or the slope, & or both? There are
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four hypotheses which we could investigate with the summer data and they are
listed below together with the residual sum of squares derived by assuming that
hypothesis to be true.

Hypothesis Intercept Slope Residual sum Degrees of
of squares Sfreedom
H; different different 1277.88 5
H, same different 1647.01 6
H, different same 1850.30 6
H, same same 344438 7

To test the hypothesis (H,) that the pre- and post-drainage regression lines
have the same slope (but not necessarily the same intercept) we would compute
[(1850.30 — 1277.88)/11/(1277.82/5) = 2.24 which should follow F, 5. The 5%,
point of F,, is 6.61 and hence we accept this hypothesis using a 57
significance test. A similar calculation would lead us to accept hypothesis H,
that the regression lines have the same intercept (but not necessarily the same
slope). However the hypothesis H,, that the regression lines have both the same
slope and the same intercept is the hypothesis we considered earlier which gave
a test statistic of 4.24 which should follow F), .

For this particular set of data, the conclusien to be drawn from examining
the three hypotheses H,, H, and H, is not clear cut, although in other
situations it might be quite informative. From examining H, there is some
suggestion that the lines differ but by examining H, and /1, it is not clear that
this difference is confined to either the slope alone or the intercept alone. It is
more that there is a marginal difference between the two sets of data which
can be accommodated by having one parameter different in the two regression
lines and it does not matter greatly whether that parameter is the slope or the
intercept. There is a marginal preference for it being the slope.

A similar set of calculations on the winter data produces the following table:

Hypothesis Intercept Slope Residual sum Degrees of
of squares Jreedom
H, different different 11733.5 6
H, same different 11742.0 7
H, different same 11933.2 7
H, same same 13972.3 8

As we saw previously, the test statistic for A, is 0.57 which should follow F, ..
Consequently there is very little reason to question the validity of H,. If there
were, then it would again be the slope parameter that differed ‘more’ than the
intercept parameter.

A similar approach could be made to substantiate the difference in the
intercept parameter, a, between winter and summer months. This time the
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division would be winter/summer rather than pre/post draining and the
parameter of interest would be 4, the intercept, rather than b, the slope.
Alternatively, a rough assessment of the significance of the difference between
two estimates of a (and similarly of 5) may be gained by computing

‘51 _éz
VIS-E(é))* +[S.E.(4))?

where the suffices 1 and 2 refer to the two groups of data, winter/summer, On
the null hypothesis of equal intercepts, the distribution of this quantity will
tend to a Normal distribution with increasing sample sizes. For an
approximate 100 a 7/ significance test we would accept the null hypothesis if

a,—d,
VIS-E.(d)1? + [S.E.(d,)]°

Thus, comparing the two post-drainage intercepts gives a test statistic of
[81.03 —(—205.04)]/[/(126.75)* +(13.89)*] =2.24 and consequently we
should reject the null hypothesis of equal intercepts using a 5% significance
test. However, for this example, sample sizes are very small and it would be
foolish to place much weight on this conclusion. An exact test of significance of
the same hypothesis would just fail to reject the hypothesis of equal intercepts,
but one advantage of the approximate test presented here is that it allows for
the possibility of different variances in the different groups which the exact test
does not.

In summary, to produce an overall model for the four groups of data it
would seem that we should allow for different intercepts for winter and summer
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Fig. 23. Parallel regression lines for the Coalburn data.
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data and either different intercepts or different slopes for pre- and post-
drainage in the summer. Opting for three different intercepts but a common
slope, Figure 23 shows the resulting three parallel regression lines. O = (86.48,
—143.08, —117.13) + 0.7309R for winter, summer pre- and summer post-
drainage respectively. The 959, confidence interval for a single value of Q 1s
also given; for clarity the intervals for the other two lines have been omitted.
The calculations may either be carried out by using dummy variables to
introduce the different intercepts, as already explained in this section, or by
making use of the general results usually referred to as analysis of covariance.
These lead to some economy of calculation for regression models which consist
of some dummy variables and some genuinely quantitative independent
variables.

The residual sum of squares from fitting this model to the whole data set is
15943 with 15 degrees of freedom. A test of the assumptions made about the
slope and intercept parameters (common slope for all four groups and
common intercept parameter for both winter groups) could be performed
using the general linear hypothesis approach of Subsection 2.3.1. The value of
Ry, will be 15943 with 15 degrees of freedom and the value of R will be 13010
with 11 degrees of freedom (the residual sum of squares from fitting a model
with different slope and intercept parameters for each group). Our test statistic
will be [(15943-13010)/(15—11)]/(13010/11) =0.62 which should follow
F,,,. We could clearly not reject the hypothesis of common slope and
common winter intercept parameter.

5.2 Multiple Regression on Mean Annual Flood
5.2.1 Introduction

Data were provided by the Institute of Hydrology on the annual maximum
flood and various catchment characteristics for 83 catchments distributed over
the whole of England, Wales and Scotland. This data set will be referred to as
data set X. The catchment characteristics were area (AREA), stream frequency
(STMFRQ), stream slope (s1085), mainstream length (MsL), standard annual
average rainfall {SAAR), one day rainfall of 5 year return period less effective
mean soil moisture deficit (RsMD), urban index (URBAN), lake index (LAKE) and
soil index (soiL). Detailed explanation of these characteristics is given in
Report No. 49 of the Institute of Hydrology by J. V. Sutcliffe (1978). The length
of record varied considerably with as many as 43 annual maxima available in
one catchment and 2 in another, giving a total of 905 readings of annual
maxima in all. Individual readings of annual maxima will be denoted by Q;
and the mean of all values of @;; for a particular catchment by Q.. -
The Flood Studies Report (1975) gave methods for assessing the statistical
distribution of floods suitable for a range of cases depending on the amount of
information available and relevant to any given site. As part of this overall
scheme there was a requirement to be able to predict the mean annual
maximum flood (Q) for sites at which no flow-gaugings at all are available. This
predicted mean value would then be used as an input by other procedures.
Objectively determined catchment characteristics such as those listed above
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were found for existing gauge sites together with values of @, which was
essentially just the average of the individual yearly maximum instantaneous
flow rates for each site: however, for gauges with only short records, improved
estimates of mean annual flood were sometimes used. For the study here the
individual yearly maxima are available and so a somewhat more general
analysis can be made, looking at the relationship of the distribution of yearly
maxima with catchment characteristics. Data set X consists of the same
catchments as available for the Flood Studies Report except that only the 83
out of 643 catchments with areas of less than 72 km? are included: the period of
data is also the same.

The Flood Studies Report had suggested a countrywide equation relating
catchment characteristics and mean annual flood @ which was linear in the logs
of the variables. It was suggested that the equation could be improved if
regional multipliers were used instead of a single countrywide constant. In
regression terms the countrywide equation with a single constant could be
derived by applying the multiple regression technique to the dependent
variable log @, and independent variables log AREA, log STMFRQ etc. of to the
dependent variable log Q;; and the same set of independent variables. The
difference between these two approaches will be discussed at the start of
Subsection 5.2.2.

Table 4 gives the regression coefficients quoted in the Flood Studies Report
and those derived with equation (36) using data set X with log Q;; as the
dependent variable.

Table 4 Regression coefficients for predicting mean annual flood, §

fog log log log log log log log

AREA STMFRQ SH85 SAAR assp (1 +vrsax) (J +14kE)  son

Flood Studies 0.94 0.27 0.16 — 1.03 — —0.85 1.23
Report

Data set X 0.79 023 0.13 0.85 — 2.44 — 1.29

The reason for transforming UrRBAN and LAKEis that both indices can be zero
and hence will give values of —co when logged. Many other transformations
could of course be applied but 1+ UrRBAN, |+ LAKE have the advantage, in
interpretation, that they have no effect on the resultant prediction if the
catchment in question includes no urban or lake area.

In general there seems to be reasonable agreement between the two sets of
coefficients. The data sets differ in that data set X is of a limited number of
smaller catchments. Variables SAAR and RSMD have a correlation of 0.93 and
consequently it is no surprise to find the one substituting for the other in the
equations. Data set X contains very few catchments with lakes and hence LAKE
is not useful for predicting @ for this data set. This small point illustrates the
dependency of any derived equation on the scope, quality and context of the
data set used to derive it.

To illustrate the theory given in Sections 2.2 and 2.3, we will give some
further details of the calculations involved in the regression using data set X.
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Table 5 Regression coefficients and their standard errors

Variable Identity Regression Standard Test
coefficient error statistic

y log annual maximum flood
x, log AREA f,=079 0.042 18.50
X, log STMFRQ B,=023 0.027 8.65
X, log s108s B,=0.13 0.042 3.09
X, log msL B.=0.10 0.056 1.73
X log saar B;=10.85 0.114 7.47
Xg log rsMD B, =0.02 0.109 0.20
X; log {1 + UrRBAN) f. =244 0.214 11.42
Xg log {1 + LAKE) Bg=0.16 0.200 0.82
Xq log soiL fo=1.29 0.084 15.34
d=—583 0.53 —-10.95

The regression coefficients have been derived from equation (36) and their
standard errors from equation (37) using equation (39) to estimate ¢2. In
Subsection 2.3.2 we suggest that a test of significance of 8, =0(i=1,2,...,9)
involves computing the ratio of the regression coefficient and its standard error
(last column) and comparing this with the 7 distribution with n — & — 1 (=895)
degrees of freedom. The value of #(895,0.975) is 1.96 and thus we only accept
B, =0 for i=4, 6 and 8 using a 5%, significance test.

If we had wanted to test the hypothesis f, =8,=---=8,=0 (y is not
linearly related to x|, x,, ..., xg) we could have formed the analysis of variance
table given below as described in Subsection 2.3.2.

Source Sum of squares Degrees of Mean square
freedom
Regression 691.97 9 76.89
Residual 297.96 895 0.33
Total 989.93

The ratio of the two mean squares is ~233 which is certainly greater than
F(9,895,0.95) (=2.21) and hence we would reject the hypothesis of no linear
association between y and x,, x,, ..., Xq.

Having observed that the two data sets seem quite similar and that a
straightforward application of the multiple regression technique of Chapter 2
can establish a relationship between Q and catchment characteristic, let us just
stand back for a moment and consider what we have done. We chose to work
with the logs of all variables. On what grounds could this be justified and were
the assumptions of multiple regression satisfied? Is there a better transfor-
mation than log? Is it reasonable to assume a countrywide equation, or to
allow a different constant term for different areas, or should there really be a
different equation for different areas?
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5.2.2 Transformations and weights on annual maximum flood

Confining our attention from now on to data set X, the regression equation
given in Subsection 5.2.1 was calculated by computing the logs of all readings
of annual maximum flood (Q;) and regressing them on log catchment
characteristics. Because, within a given catchment the values of the
independent variable will be constant, this is in some ways practically
equivalent to regressing the mean of the logs of annual maximum flood on log
catchment characteristics. However the latter regression would need to be a
weighted regression (see Subsection 2.4.2} as there are more readings in some
catchments than others, and hence the means will have different variances. The
weights should be equal to the number of readings in each catchment. Either
method would then be ‘valid’ provided that the variance of log Q,; remained
constant under all catchment conditions, although the degrees of freedom on
the residual sum of squares will be larger, and hence the tests of significance will
be more sensitive, if the original 905 values of Q, , rather than the 83 means, are
used. They will correspond to a regression on log Q if (J is interpreted as being
the geometric mean of annual maximum floods. However they will differ
slightly from a regression in which Q is taken to be the more usual estimate of
mean annual flood, the arithmetic mean of annual maxima.

For examining the assumption of constant variance of log(Q, j 1t 18
particularly useful that the data set has repeated readings of the dependent
variable at fixed values of the independent variables (several readings of annual
maximum flood from each catchment). The test of homogeneity of variance
used in Subsection 1.3.2 may be slightly modified to compare the 83 estimates
of variance obtained from the different catchments. Unfortunately this test
shows a significant difference (p <0.001) in the variance of log @,; from
catchment to catchment.

An argument for using the logarithm of @;; might have been that the
variance of Q,; was not constant from catchment to catchment but varied with
the square of the mean (see Subsection 3.3.1). As mentioned there, by plotting
estimated mean and standard deviation of annual maximum flood against each
other, such a possibility could easily be investigated. A straight line should
ensue from such a plot.

For this particular data set a straight line goes a long way to explaining the
relationship between mean and standard deviation but by no means
completely. This is confirmed by the outcome of applying the Box—Cox
transformation (see Subsection 3.3.3) with Q,; as dependent variable and log of
catchment characteristics as the independent variables. A value of A =0.115
gives the maximum value of L,(4) and the hypothesis 2 =0 (implying a log
transformation) is rejected using a 0.19% significance test (2(L,(4,,,)—
L,(4,)) = 35.06 > *(1,0.999) = 10.83).

Thus it would unfortunately appear to be invalid to apply multiple
regression as described in Subsection 5.2.1 to log Q;; and log of catchment
characteristics. The appropriate transformation for this data set would be to
take (Q;;)"""® when using the logs of the catchment variables. This would still
lead to a multiplicative model in the catchment variable but that model would
no longer be predicting yearly annual maximum flood but the function
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antilog (annual maxim flood)®* ! If it were felt, on physical grounds, or for
mathematical simplicity, to be sensible to use log annual maximum flood and
log catchment characteristics then a weighted regression could be performed
with the mean values of log Q;; for each catchment as the dependent variabie
and with weights =(no. of readings in the catchment)/(sample variance of
log Q;; for that catchment). A further variant might be to relieve the parameter
A in the Box—Cox transformation of the burden of equalising all the variances
and instead, incorporate the Box-Cox transformation into a weighted
regression of (Q,)* on catchment characteristics (logged or otherwise).

5.2.3 Regression of the standard deviation

There are several reasons for trying to predict the standard deviation of the
annual maximum flood. It would be interesting to see which catchment
characteristics influence variability, it would enable us to ‘smooth’ our weights
prior to a regression analysis of the type described above and it would allow
statements about precision of prediction of annual maximum flood to be given
in terms of value of certain catchment characteristics.

However, although with this data set, we can readily estimate the standard
deviation of annual maximum flood for each catchment, the variance of that
statistic will not be constant over all catchments. Thus, it would be invalid to
use that statistic in an unweighted multiple regression. A weighted multiple
regression analysis could be performed making use of the fact that, for a
particular catchment, the estimate of standard deviation

1 & -

— 3 (@;-0)

H,— j=1
has variance approximately equal to o?/n; for a normal population where the
catchment standard deviation is ;. Other possibilities might also be considered
such as a transformation to stabilise the variance using the technique of
Subsection 3.3.1 or a Box-Cox transformation. Because of the relationship
between the estimated standard deviation and its variance, the appropriate
variance stabilising transformation is log (estimated standard deviation).

A weighted multiple regression analysis of log (estimated standard
deviation) on catchment characteristics and mean annual flood with weights
equal to the number of readings in the catchment is only moderately successful.
Two independent variables have regression coeflicients which are significantly
different from zero, ¢ and soiL. Applying the Box-Cox transformation
suggests a transformation (estimated standard deviation)®*® and the
hypotheses A =0 (log transformation) and A =1 (no transformation) are both
rejected using 0.1% level significance tests. A combination of weighted
multiple regression and a Box-Cox transformation suggests the trans-
formation (estimated standard deviation)®*?.

Using either of these transformations produces a much more successful
regression. Several regression coefficients are significantly different from zero,
51085, SAAR LAKEand (, suggesting that each of these factors is associated with
variability in annual maximum flood, and there are very few outliers evident
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when observed and predicted values are compared (see Figure 24). There are,
of course, other more objective ways of comparing the relative success of
different regressions. Chapter 12 of Seber (1977) gives details and references to
a selection of methods. There are only two ‘significantly’ large residuals and in
both cases the regression model has underestimated the standard deviation. It
would be interesting to examine the particular features of these catchments
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which apparently have more variability in annual maximum flood than one
would expect; the gauge numbers are 40 006 and 55 008. The feature is that they
produce mostly relatively low annual maximum flood values except for a few
exceptionally high ones, thus the mean is low but the standard deviation is
relatively high.

Returning now to predicting Q from catchment characteristics a weighted
regression with the catchment standard deviations predicted from the multiple
regression on estimated standard deviation described above, proves to be much
more satisfactory than one using the sample standard deviation for each
catchment. More of the regression coefficients are significantly different from
zero and there are very few outliers amongst the residuals, in fact just two
again. These correspond to catchments 67003 and 87801 both of which are
predicted to have a higher value of @ than they in fact achieve. The significant
variables are AREA, $1085, SAAR, URBAN and soiL. A Box—Cox transformation of
Q could be considered within the weighted regression but the weights should be
altered to take account of the transformation of (. The results of such
regressions should not be taken too seriously. Weighted linear regression as
described in Subsection 2.4.2 assumes the weights to be known exactly whereas
here they are estimated and furthermore that estimation involved using
variables that are then used as dependent and independent variables in the
weighted regression.

5.2.4 Comparisons between regions

Let us now examine the wisdom of using a single countrywide equation to
predict annual maximum flood. As was mentioned in Subsection 5.2.1, the
Flood Studies Report suggested using a single equation but with regional
multipliers, but a further alternative (also considered in the Flood Studies
Report) would be to use a completely different equation for each region.

Although intended to give some coherence to the data analysis, the main
purpose of this subsection is to illustrate the use of techniques described in
Subsection 2.4.1, the comparison of several regression lines. Consequently, we
shall not concern ourselves further with the problems of transformation or
weighting but simply assume that a log transformation of all variables
produces a set of data which satisfy the basic assumptions for a multiple
regression analysis. It would, of course, be more correct to pursue the
transformations examined in the previous subsections.

Data set X was drawn from nine regions (regions 1-9 in Sutcliffe (1978)) but
there were insufficient catchments in each region to be able to treat them
separately in a multiple regression analysis. Consequently four composite
regions were formed, as follows:

Composite region Region
A (West of England) 4,8,9
B (East of England) 5,6,7
C (North England, South Scotland) 2,3

D (Northern Scotland) 1
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Forming the analysis of variance table as described in Subsection 2.4.1 gives
the following resulis:

Source Sum of squares Degrees of freedom
Overall regression 691.97 9
Difference in positions 10.57 k!
Difference in regressions 76.13 27
Residual 211.26 865
Total 989.93 904

(Because for this data set we have repeated observations of the dependent
variable for each set of values of the independent variable, it would have been
possible to split the residual sum of squares into two components, a systematic
departure from the regression lines component and a new residual sum of
squares which would measure ‘within catchment variation’. The form of the
sums of squares would be similar to those given in Subsection 1.3.1).

Testing firstly for parallelism of the regression lines for the four composite
regions (B;, =B, =B;;=P;s for j=1,2,...,9) gives a test statistic of
(76.13 x 865)/(211.26 x 27) = 11.54 which should follow an F distribution
with 27 and 865 degrees of freedom if the hypothesis is true. As
F(27,865,0.999) = 2.1 we strongly reject the hypothesis of parallelism. Thus it
would appear from the 83 catchments studied, that using separate regression
equations for each region will provide a much more accurate description of the
data than a single regression equation with regional multipliers.

If we insisted on a single regression equation but were unsure about the
merits of regional multipliers as opposed to a single constant, then the second
test given at the end of Subsection 2.4.2 (a, = «, = o, = «,) would give some
insight into this question. The test statistic is (10.57 x 865)/(211.26 x 3) = 14.43
and F(3,865,0.999) =5.4 and consequently we must also reject this
hypothesis. Thus, if we insist on using a single regression equation, it is much
better to use regional multipliers than a single constant term.

Multiple regression computer programs are readily available these days but
many only cope with a single set of data as described in Subsection 2.2.1 and do
not have the immediate facility for handling several groups of data as described
in Subsection 2.4.1. However, by using dummy variables (see Subsection
2.5.4), noting the generality of the general linear hypothesis method of testing
(sée Subsection 2.3.1) and running the program several times, the analysis just
described can be performed. Three separate groups of runs are required:

(a) a multiple regression analysis separately on each composite region’s set
of data;

(b) a multiple regression analysis on the whole data sct but with further
independent variables which are dummy variables defining the
particular composite region from which the data came;

(c) a muitiple regression analysis on the whole data set ignoring the
existence of composite regions.
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For this data the set of runs under (a) produced the following residual sums
of squares:

Table 6 Individual regressions on each region

Composite region Residual Degrees of freedom
sum of squares

A 33.35 197
B 133.17 281
C 27.29 207
D 17.45 180
(Total) 211.26 863

Run (b) used three dummy variables which took the following values:

Compasite region X10 Xy Xyq
A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1

and produced a residual sum of squares of 287.39 with 892 degrees of freedom.
Run (¢} produced a residual sum of squares of 297.96 with 895 degrees of
freedom (see Subsection 5.2.1) and a total sum of squares of 989.93 with 904
degrees of freedom.

The analysis of variance table given previously in this subsection is now
formed as follows.

Source Sum of squares Degrees of freedom
Overall regression 989.93 — 297.96 =691.97 904 —895=9
Difference in positions 297.96 — 287.39 = 10.57 §95—-892=3
Difference in regressions 287.39 - 211.26 =76.13 892 — 865 =27
Residual 211.26 865

Total 989.93 904

Returning to the interpretation of the analysis, Table 7 gives the significant
regression coefficients for the four composite regions arising from run (a)
mentioned above.

As the analysis of variance has suggested, there is considerable variation in
the regression coefficients between the four composite regions. Although AREA
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and sTMFRQ have a roughly similar role in regions A, B and C they are not
particularly relevant in region D. This probably reflects the nature of data set
X, in that only catchments with small area were included, rather than that area
is not, in general, a significant factor in predicting annual maximum flood.
Similar comparisons may be made with the coefficients of other variables
although one must always bear in mind that intercorrelation between these
variables can lead to one regression coefficient being ‘traded off” against
another and even to one variable being omitted because of the inclusion of
another (see Subsection 5.2.1).

Table 7 Regression of log annual maximum flood on log catchment characteristics

Composite  Constant log log log log log log log log log
region AREA  STMFRO Si085 MSL SAAR rsMD (I +URBAN) (I +1L4KE) sOIL
A -9.13 1.28 0.25 -0.31 —1.13 1.i4 —29.87 —-449 —1.88
B —4.53 0.78 0.16 0.97 0.41 — — 2.75 — 1.17
C —-4.39 0.82 0.38 —0.16 —_ 0.66 0.41 - — 2.26
D —158 —_ -— 0.74 2.67 1.05 — — 11,18 —3.33

One final difference to point out is the much larger residual sum of squares
associated with composite region B, evident in Table 6 and in the plot of
observed and predicted values given in Figure 25. This appears to suggest that
for the Eastern region of England, annual maximum flood is much more
difficult to predict from catchment characteristics than for other parts of the
country, but such a hypothesis would not be supported by physical
considerations.

5.2.5 Examination of assumptions

The various models outlined above for relating annual maximum floods to
catchments characteristics can be thought of as attempts to find a regression-
like structure in which the residual errors have a constant variance—so that at
least this one of the basic assumptions of standard regression theory. would
hold. However, the extent of departure from the other assumptions also needs
consideration, together with the possible effect on any conclusions. For this
example, it is reasonable, on an intuitive basis at least, that flood events on
adjacent or neighbouring catchments will be correlated, so that residuals of
annual maximum flood in the same year will also be correlated. While it is
possible to account for correlated residuals within the overall analysis by using
generalised least squares, in this case the estimation of these correlations is
problematic in view of the small number of observations available to estimate
each correlation. It would probably be enough to note that the correlation
would generally be positive and that only a relatively small number of pairs of
residuals are correlated, since residuals in different years are assumed
independent. Thus the overall effect would be that the variances of the
estimated parameters would be underestimated by a small amount if the
analysis ignored the inter-correlation.
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Fig. 25.- Regression of log 0, on log catchment characteristics for composite regions.

The third assumption that would need to be checked is the Normality of the
residual errors, for example, using the probability plots discussed in
Subsection 3.2.3. To some extent a choice between competing models might be
based on the closeness to Normality of the residuals, but this is possibly less
important than other considerations such as the simplicity of structure of the
final form of model.
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5.3 Stepwise Regression—Choosing the Best Predictors
5.3.1 Introduction

Forecasts of monthly streamflow can be of use in a range of circumstances: in
the efficient operation of dams for agriculture or hydropower, for example, or
simply as background information providing some advance warning of
whether flows will be high or low. The way in which such forecasts can best be
obtained obviously depends to a great extent on the type of data that would be
routinely available for making the forecasts, and on other general
considerations such as the size of the catchment concerned. The problem
examined in this section is the prediction of monthly streamflow in the Mekong
at Pakse in Laos. Since the catchment here is extremely large (545 000 km?) and
is not all within one country, values for rainfall from an appropriate widely-
spread set of sites would be difficult to obtain. Values for flow in major
tributaries and for points upstream on the main channel would be more easily
obtainable and more useful, but it might still not be possible to arrange to
receive these values within sufficient time on a routine basis. Ideally such data
might be used in some form of flow-routing model, perhaps operating on a
daily time scale. The problem considered here will be that of predicting, in
some simple way, future monthly total flows on the basis of routinely-made
daily readings of flow at the same site. For this exploratory analysis the data
used consisted of 48 years of records of monthly total flow, flow on the last day
of the month and flow on the second last day.

Monthly flow varies considerably from month to month and within a given
month, as illustrated by the means and estimated standard deviations given in
Table 8 and the histograms given in Figure 26.

Table8 Monthly flow (million cubic metres) in the Mekong at Pakse (April 1934-March 1982)

Month Mean S.D. Month Mean S.D.

January 7652 I 245 July 46 596 11328
February 5333 824 August 73085 14111
March 4793 663 September 74437 13673
April 4 440) 785 October 45475 10431
May 7621 2107 November 21821 4617
June 23715 7392 December 11766 1971

The effect of the monsoon rains is beginning to be evident in May, but notice
that the onset of the monsoon produces much more variability in flow (May
and June) than a similar level of flow at the end of the rainy season (November
and December). This fact and the suspicion that it will be unlikely that the flow
in March and April will predict the time of arrival or magnitude of the
monsoon rains suggests, even at the early stage, that it will be difficult to predict
monthly flow in May or June.
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Fig. 26. Histograms of monthly flows in the Mekong at Pakse.

5.3.2 An example of stepwise regression

For a particular month, we wish to predict the flow, at a particular time, from
any information available before that time. Thus, for August 1942, we could
potentially draw on any values of monthly flow for months preceding that date
(100 values in this data set), any values of flow in the last day of the month for
months preceding that date, etc. In a regression context, if we take the
dependent variable y to be monthly flow in August and the independent
variables, flows in previous months, we may state the objective to be to predict
monthly flow in August, but other features of the problem do not immediately
fit into the regression mould.,

First of all the independent variables may well be previous values of the
dependent variable. Furthermore, the number of independent variables will
increase, as values of the dependent variable are taken from more and more
recent years. Problems arising from using previous (lagged) values of the
dependent variable as independent variables were discussed at the end of
Subsection 3.4.2. Clearly we should proceed with some caution. As far as the
problem of an increasing number of independent variables is concerned, one
approach, and it is not the only approach, would be to decide beforehand how
many years’ previous information to use. Studying a correlation matrix of flow
for the month in question versus flows in previous months might suggest that
there is little point in using information from more than two years ago.

For this particular set of data, it would appear that there is little value in
information more than three years before the month in question. Adopting
that suggestion, the number of available sets of observations will be 45 but the
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potential number of independent variables is still very large. The number of
independent variables must be at least one less than the number of observations
for a solution to equation (35) to exist. Consequently, we must either exclude
further independent variables at this stage or use forward selection (Subsection
2.3.5) or stepwise regression (Subsection 2.3.7) to build up gradually a
regression equation from the pool of available independent variables. In that
stepwise regression is a forward selection with additional safeguards, the
former is usually preferable.

Toillustrate the technique let us apply stepwise regression to monthly flow in
January, with independent variables Mr, LDr, SDr (r=1,2,3, .., 12,24, 36)
where Mr, LDr and SDr indicate monthly flow, flow on the last day of the
month and flow on the second last day of the month for that month which s r
months before that of the dependent variable. Following the steps as outlined
in Subsection 2.3.5, Step | is to perform simple linear regression of y on each of
the independent variables. Testing the significance of the hypothesis =0
(which is equivalent to testing the significance of the correlation coefficient
between y and the relevant independent variable) gives the set of independent
variables which are significantly associated (using, in this case, a 57
significance level) with monthly flow in January. Starting with the most highly
significant, they are: LD1, SDI, M1, LDI1, SD11, Mil, M10, SD12, M12,
LD12, M9, LD10, SD10, M7, SD7, LD7, LD8, LD2, SD%, SD8, SD2 and
LD9. Consequently, we select LD1 for inclusion in the regression equation.

Step 2 requires computing the partial correlation coefficients between
monthly flow in January and each independent variable conditional on LD1.
As an example, let us compute the partial correlation of monthly flow in January
(M) with LD12. The correlations we need for equation (49) are as follows:

Variables Correlation
LDI12 and LD} 0.304
LD1Zand M 0.452
LDl and M 0.887

The partial correlation between M and LD12 is, from equation (49), 0:415.
Repeating this calculation for each independent variable gives the set of
independent variables which might be added to the regression equation at this
stage. They are, in order of absolute value of partial correlation coefficient,
M9, M10, SD12, LD12,SD10, LD10, M12,SD9, LD11,SD11, M11 and LDS.

Step 3 will mean including M9 in the regression equation. Testing the joint
significance of LD1 and M9 using the analysis of variance table given in
Subsection 2.3.2 gives a test statistic of 96.1 which means that we must strongly
reject the hypothesis of no linear association between M and the independent
variables, ZD1 and M9. As mentioned in Subsection 2.3.2, the merit of M9 in
addition to the variables already included in the model (LD1) may be judged by
comparing the ratio of the regression coefficient of M9 and its standard error to
the appropriate ¢ distribution. The ratio is 3.2 and consequently we strongly
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reject the hypothesis that M9 should be omitted from the model when LD1 is
included.

Stepwise regression differs from forward selection in that it also examines the
possibility, at each stage, of excluding a variable already included in the model.
Thus, at this stage, we should also examine the value of LD1 once M9 has been
included in the model. Using the same test as for M9 gives a ratio of 12.3 which,
again, strongly supports the inclusion of the variable (LD1) in the model.

Step 4 examines the partial correlation between M and the other
independent variables, conditional on LD1 and M9. The largest partial
correlation is between M and SD12 (=0.30) and the next largest is between M
and LD12(=0.28). Including SD12in the model and repeating step 3leadsto a
significant overall model, but the individual contribution of SDI2 is not
significant, giving a ratio of 1.8. Thus the procedure stops with a fitted model

M =189.48+19.54 x LD1 +0.38 x M9
Table 9 summarises the outcome of applying the stepwise procedure to each
month individually:

Table § Stepwise regression for each monthly flow

Dependent variable: Independent variables Multiple correlation
Monthly flow in— (in order of selection) coefficient
January LD1, M9 091
February M1, LD2, SD7, LD& 0.95
March M1, LDI12, M7 091
April LD1 0.83
May SD3, 8Deé 0.53
June LD1, LDR 0.51
July LD1, M2 0.63
August LD1, LD3, $D1, §D11 0.73
September LD1, LD24, M4, LD12, LD6, SD1 0.77
October LD1,5D1, LD2 0.86
November LDl, LD3, SD3 0.82
December LD1, SD10, D4 0.84

There are several aspects of Table 9 on which to comment but the one most
frequently taken for granted is the tremendous ‘data reduction’ which stepwise
regression achieves. Ascan be seen from the detailed description of the analysis
of the January data, the collection of variables correlated with monthly flow is
reduced to a small subset which contains most of the pertinent information. It
does not follow that the variables listed above are the ‘correct’ set or that they
describe the ‘true’ relationship. In interpreting such a table it is always worth
considering those variables that just missed being included, perhaps because of
high correlation with an already included variable. The best that can be
thought of the relationships set out in Table 9 is that within a certain
framework they best represent the data provided. They are only as good as the
data reflects the nature and extent of the phenomenon being studied.
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Turning now to the independent variables selected by stepwise regression, it
is immediately apparent that, as would be expected for predicting monthly
flow, some feature of flow in the previous month is the most important variable,
amongst the variables considered. The one exception is the month of May
when, almost certainly, it is the timing of the onset of the monsoon which has
most influence on the monthly flow. Notice, however, the strong preference for
the flow on the last or second last day, rather than monthly flow, as a predictor of
the following month’s flow. The appearance of LD12, M12 or even LD24 in
certain months suggests a pattern from year to year for these months.

Long range dependencies such as seen here are not necessarily unrealistic,
since part of the flow of the Mekong derives from glaciers in the Himalayas and
glacier-fed rivers often exhibit fluctuations in flow over periods of years related
to the extension and recession of the glaciers. However, the extent of any man-
made influences would also need to be checked but are likely to be small in
comparison with the large natural flows.

Too literal an interpretation of the inclusion of some of the other variables
may be misleading. For instance, in November, LD3 would appear to be of
importance yet LD?2 is not. However, the correlations of LD2 and LD3 with M
are 0.13 and —0.04 respectively, indicating that when judged on their own,
LD? has a stronger association with M than has LD3. The reason for LD3 being
included in preference to LD2 is that the partial correlations of LD2 and LD3
with M, after allowing for the effect of LD1, are —0.17 and —0.30 and thus
LD3 provides the most additional information after LD1 has been included.

However, there are some interesting patterns which are worth noting such as
the inclusion of SD1 as well as LD1 for the three consecutive months of August,
September and October. In each case LD1 has a positive regression coefficient
whereas SD1 has a negative regression coefficient which suggests that this
combination of variables may be detecting whether the peak flow following the
monsoon has been passed and that flows are now decreasing, or whether flows
are still rising. A similar explanation might be the reason for the inclusion of
LD2 in addition to M1, in the independent variables for February. The
regression coefficient for LD?2 is negative and thus the combination of M1 and
LD? may reflect whether monthly flow is still falling in the preceding months
and, if so, how rapidly. Given these observations and the fact that LDrand SDr
are highly positively correlated, one might consider replacing them by their
sums and differences in the set of independent variables.

Various other patterns would be worth exploring such as the inclusion of
LD2,SD3 and $D4 in October, November and December respectively, but the
purpose of this section is to illustrate the use of regression techniques as
opposed to a detailed analysis of the data set. However, it is perhaps important
to draw attention to one more obvious point, namely that the months around
the onset of the monsoon rains prove to be the most difficult to predict. Values
of the multiple correlation coefficient are at their lowest in May and June but
then climb steadily thereafter to peak in the months of January to March where
flow is steadily falling in stable conditions. It is interesting to note that flow in
April is less easy to predict than flows in previous months perhaps partly due to
the occasional early monsoon and partly because flows have reached their
lowest leve! and it is unexpected events which will alter that flow.
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In Subsection 4.3.1 it was suggested that forming a histogram of the
residuals and plotting the residuals against various other variables might be
informative in assessing the validity of the assumptions made in multiple
regression, as well as giving some further insight into the data. Figure 27 gives
histograms of the residuals on the far right of the graphs and a plot of é,,, . . ., €,
VErsus yy,...,», on the left. Notice that the months whose histogram of
residuals show the least spread do not correspond to months with the highest
multiple correlation coefficient in Table 9. The multiple correlation is
essentially a ratio of residual variance to total variance. When this ratio is
small, and hence when prediction is successful, the multiple correlation will be
large. We can assess this ratio by eye from the plots of é,,...,€, against
Vis- -y, by comparing the spread of points in the ‘y axis’ direction with that in
the ‘x axis’ direction. Where this ratio is smaller, for example in October,
November and December, the multiple correlation will be high. However such
a plot should not be used to assess the validity of the model. It can be shown
that, under the usual assumptions for multiple regressions, é,,...,¢, and
Y1s..., ¥, will be correlated and hence one might expect a trend of the type
evident in these plots even when all the assumptions of multiple regression
hold. Indeed in a variety of quite different circumstances, described in Hoaglin
et al. (1983) one might expect the plot to follow a 45° line exactly,

It may also be demonstrated that é,,...,é,and $,,..., 7 are uncorrelated
and hence it is more usual to plot these two quantities, as in Figure 28. If we had
seen a trend in this graph of the type evident in Figure 27, we might have
concluded that the model was quite inadequate, overpredicting low values and
underpredicting high values. However, there is no such trend. There is some
evidence of unsatisfactory prediction in the July figures, as shown by a skewed
histogram of residuals and an uneven spread of points in the vertical direction,
indicating that although a few values are noticeably underpredicted the
majority are overpredicted. A transformation of the dependent variable may
help in this situation.

5.3.3 Some further regressions

While scanning the data in the hope of spotting some patterns hitherto
undetected, it became apparent that there was the slight suspicion of a cyclical
trend over the years in a given month’s values. Although such a trend would be
extremely hazardous to employ in any predictor, that is unless its physical
mechanism could be understood, it provided a nice opportunity to apply the
technique of periodic regression (see Subsection 2.5.3). Analysing each
month’s results separately, cosine and sine terms of periods ranging from 3 to
12 years were used as'the independent variables in a regression on monthly
flow. If the reader has access to a multiple regression program or package but
which does not contain periodic regression, he may prefer to carry out the
calculations by running the regression program with the independent variables
as the cosines and sines of the required periods rather than writing separate
code for the formulae given in Subsection 2.5.3. This may be extremely
inefficient in computer time as it will lead to the unnecessary inversion of a
2k x 2k matrix when terms of period #,n/2, ..., n/k are used but it may be a
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more efficient use of the individual’s time if it is only iniended to perform such
regressions occasionally. However, with a stepwise regression program, it
would be advisable to ensure that the pair of variables (cosine and sine) of the
same period are either included or excluded at each stage.

Table 10 sets out the periodicity of the terms which were significant in this
analysis. Thus, for monthly flow in January, there is evidence of two cycles, the
stronger being a nine-year cycle and the weaker a five-year cycle. To find any
evidence of such a cycle is surprising but what is even more interesting is that a
nine-year ¢ycle appears to be evident in consecutive months from December to
to May (excluding April). Adjacent months are strongly correlated and so
some similarity of year-to-year fluctuations is to be expected, but this degree of
consistency does suggest that the nine-year cycle may be more than just an
artefact.

Table 10 Periodic regression in monthly flow

Month Periodicity of Multiple correlation
significant terms coefficient
January 9,5 0.42
February 9,8 0.46
March 9 0.28
April — —
May 9 0.30
June — —
July 8.5 0.40
August 11,3 0.42
September — —
October — —
November 12 0.35
December 9 0.26

The suggestion to apply periodic regression to monthly flows came from
studying the original data and noticing some pattern. In a similar way, when
studying the data and considering the problem of predicting monthly flow in
May, the main problem to emerge was to predict when the monsoon would
arrive. Monthly flows for months preceding May would seem to be of no great
value in predicting the onset of the monsoon except, perhaps, in recording
when the previous rainy season finally ended. The highly tenuous hypothesis
would then be that when the previous rainy season is abnormally late, this may
be associated with a later arrival of the next rainy season. Again, from
inspecting the data, there did appear to be some suggestion of this
phenomenon, although it is alt to easy to see what you want to see in a set of
data.

Pursuing this idea partly out of interest and partly for illustrative purposes,
we will need some indicator of when the rainy season ends. Such a variable
could then be included amongst the independent variables in a regression on
monthly flow in May. No such variable was observed directly in this data set



134 MULTIPLE REGRESSION IN HYDROLOGY

but it may be possible to construct such a variable from those observed. There
is no reason why the independent variables used in a linear regression should
not be some function of those variables which might have been used as
independent variables. The major effect of the rainy season on flow seems to be
coming to an end by December and thus an indicator of a late end to the rainy
season might be x, = (Flow in December)/(Flow in January). A high value for
this variable would indicate a later duration of the rainy season provided, that
is, that the effect of the rains did not continue unabated through December and
January. Perhaps the further inclusion of a variable x, = (Flow in January)/
(Flowin February) may be a safeguard against this unlikely alternative.

Taking an extremely simplistic view of predicting the flow in May, one might
include a variable which simply attempts to make a proportionate change to
the monthly flow in the previous May, such as

_{ monthly flow in April of year x
* " \monthly flow in April of year (x — 1)

x (monthly flow in May of year (x — 1))

The general point to be made is that it might be worth giving some thought 1o
constructing artificial independent variables which, perhaps, more directly
reflect the phenomenon being investigated. Not surprisingly there are many
pitfalls to such adventurous use of the data, especially in this context where
some of the independent variables are lagged values of the dependent variable.
The outcome of additionally using x,, x, and x, described above in
predicting y = monthly flow in May is quite interesting. The artificial variable
x, 1s significantly correlated with y, but there is a larger correlation between
SD3 and y and hence a stepwise regression includes SD3 as a first step. After
including SD3, the importance of x, falls and SDé6 is, once again, the next most
important variable. However, itis at this point that x, emerges as the next most
important factor with x, no longer of much importance at all. As would be
expected, the regression coefficient of x, is negative thus supporting the
hypothesis that a late end to the previous rainy season (high value of x,) will
lead to a later onset of the next rainy season (lower flow in May). At no stage
does x, appear to be of any importance. Using x, in addition to $D3 and SD6
increases the multiple correlation with monthly flow in M4y to 0.56.

5.3.4 A simple predictor for monthly flow

As was mentioned in Subsection 5.3.1, the particular problem in mind, which
led to this data set being collected, was to predict monthly streamflow in the
Mekong from measurements of previous flows. A further objective was that
this predictor should be as simple as possible, and it was for this reason that
transformations of the dependent and independent variables were not
considered. There is, of course, no one interpretation of the term ‘simple
predictor’. It could be one that is easy to calculate, one whose required
measurements are easy to collect or one whose form is similar from one month
to another. Once again, our objective will give the opportunity to demonstrate
a range of applications of multiple regression but the ensuing analysis should
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not, under any circumstances, be regarded as a model analysis of the set of
data.

As our first attempt, let us consider a single equation to predict all monthly
flows, but just as we used ‘regional multipliers’ in Section 5.2, so here we will
include individual constants for the months by introducing eleven dummy
variables (as in Subsection 5.2.4). A stepwise regression produces a very neat
solution; the setected subset of independent variables out of the set Mr, LDr,
SDr (r=1,2,3,...,12,24,36) consists of LD, LD2 and LD3 together with
dummy variables for months May, June, July, August, September and October.

Again, the last day flow appears to be more useful than the monthly flow.

Table 11 Correlation between observed and predicted monthly flow

Month Stepwise regression Single equation Predictor using
Sfor each month with individual periodic equation
(equation A) monthly constants Jor LD coefficient
{equation B) (equation C)

January 0.91 0.77 0.89
February 0.95 0.89 0.89
March 0.91 0.84 0.84
April 0.83 0.82 0.83
May 0.53 0.42 0.41
June 0.51 0.43 0.43
July 0.63 0.58 0.58
August 0.73 0.56 0.54
September 0.77 0.56 0.56
October 0.86 0.79 0.78
November 0.82 0.71 0.78
December (.84 0.70 0.79

Table 11 gives the multiple correlation coefficients for various attempts at
predicting monthly flow. The first column simply reproduces those values,
given in Table 9, derived from applying stepwise regression to each month
separately. To some extent this column will be taken as a reference level, as
amongst linear functions of the independent variables it should be close to the
best that can be achieved. However, within the context of a simple predictor, it
would be cumbersome to implement as it requires quite different collections of
variables to predict different monthly flows. We will refer to the predictors
given by applying stepwise regression in this manner as equation A. We see
from Table 11 that the single equation predictor described above (now referred
to as equation B) is generally quite good, giving correlations which are quite
close to these achieved by equation A. Except for the difficulty of predicting the
May monthly flow, it is August/September and December/January flows which
are noticeably less successful with equation B.

For our second attempt at a simple predictor we might try to accommodate
the variation from month to month in the relationship of monthiy flow with the
available independent variables. An approach to this objective might be to
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decide on a small collection of independent variables which appear in most of
the predictors given in Table 9, compute separate regression equations for each
month and then try to establish a fairly simple relationship to describe how the
regression coefficients of a particular variable vary over the months. To
illustrate this approach, the collection of variables LD1, LD3, LD6, LD9 and
L D12 were selected, partly because they cover the preceding twelve months in a
reasonably uniform way and partly because of their popularity (or that of a
near neighbour) in the regressions summarised in Table 9. It is of some benefit
in this context to scale both the dependent and the independent variables to
have zero mean and unit standard deviation across the data set studied. With
such a standardisation, the regression coefficient in a regression of y on x would
just be the correlation coefficient between y and x. Carrying out that
standardisation and computing separate regressions for each month of
monthly flow versus LD1, LD3, LD6, LD9 and LD12 gives the set of regression
coefficients for LD1 given in the first column of Table 12.

Table 12 Calculated and predicted regression coefficients for LD1

Month Calculated regression Predicted regression
coefficient coefficient
January 0.84 0.38
February 0.88 0.84
March 0.77 0.74
April 0.89 0.62
May 0.20 0.51
June 0.39 0.44
July 0.55 0.42
August 0.53 0.47
September 0.44 0.56
October 0.79 0.68
November 0.81 0.79
December 0.77 0.87

As might have been expected, there appears to be a cyclical trend in these
coeflicients and hence a possible model to describe these values might be a
periodic regression with one sine and cosine term ¢ach of period 12 months.
Fitting such a model as described in Subsection 2.5.3 gives the fitted model LD1
regression coeflicient = 0.653 +0.215 cos (2ar/12) + 0.0911 sin (2nr/12) where
r=1,2,...,12 for months January, February, etc., respectively. Using this
equation to predict the regression coefficients of the standardised version of
LD1 gives the set of values given in the second column of Table 12.

Ignoring the variables LD3, LD6, L.D9 and LD12 and just using the formula

Flow in month r — mean
S.D.

2nr . {2zr LD]l —mean LD1
=(0.653 +0.215 cos(-ﬁ)+0.09ll sin (ﬁ))( SD. of LD )
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(now referred to as equation C) to predict the flow in each month gives the set of
correlations given in column 3 of Table 11. Notice that, because each monthly
flow has been standardised about its monthly mean, this regression is
equivalent to fitting separate constant terms for each month and in that sense is
similar to equations A and B. '

Comparing columns 2 and 3 of Table 11, there s very little to choose between
the two predictors. They give almost equally good prediction for most months
but equation C has a marginally better performance in November—January.
Which of the predictors to recommend would depend largely on other factors
such as the purpose for which the predictor is to be used. Is it primarily for
monitoring the months with high flow, the months with low flow or flow in the
months at the beginning of the rainy season? Equally, which formula is
actually most useful will depend on other factors.

In principle, tables of month-by-month coefficients could readily be supplied
for any of the predictors to keep computation to a minimum. While a predictor
which uses only the single independent variable LD1 is attractive, there would
be little extra difficulty in implementing predictors based on more variables,
particularly if hand calculators were used. There may be a preference for
predictors whose coefficients change smoothly over the year, since then one
would feel confident about interpolating the coefficients to produce forecasts of
total flow, from the middle of one month to the middle of the next, based on the
latest available day’s flow and on total flow over the previous mid-month to
mid-month, and so on.

Our final attempt at a simple predictor stems from regarding equation C,
because it uses standardised variables, as predicting the departure from the long
run mean for a given month. This suggests predicting the long run monthly value
with one equation which makes use of previous flows for that month and then
predicting the departure from the long run value with an equation which makes
use of flows in the immediately preceding months. The predictors from such a
two-stage predictor cannot be better than that from a single equation
incorporating all of the variables (in a linear model context). However, a two-
stage predictor may be easier and more flexible to administer and the equations
will probably be easier to interpret than the rather haphazard collection of
variables which stepwise regression produces.

Let us start, therefore, by considering the prediction of monthly flow from
previous flows for that month. Using the previous three years’ monthly flows
and flow on the last day as independent variables, a separate regression for each
month gives a set of predictors referred to as equation D, whose multiple
correlation coefficients are given in the first column of Table 13.

Not surprisingly, it is the immediately preceding year’s flow which figures
most prominently in these predictors and there are an equal number of cases in
which monthly flow and flow on the last day of the month are the preferred
variables. Also, not surprisingly, it is the more stable months of January to
April which are most amenable to a predictor of this type. The months of May
and June have proved difficult to predict in all of the approaches adopted so far
but we see here that flows in the ensuing months of August to December are not
easily predicted from long term historical data.

The second stage of this two-stage predictor is to incorporate flows from the
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Table 13 Two stage predictor of monthly flow

Month Stage one predictor Stage two ‘correctors’
(equation D)}
Using Additionally using
errors in Sflows in

previous months  previous months

January 0.62 0.85 0.93
February 0.57 0.81 0.92
March 0.68 0.90 0.89
April 0.53 0.77 0.81
May 0.42 0.38 0.41
June 0.45 0.49 0.49
July 0.39 0.56 0.58
August 0.21 0.40 0.79
September 047 0.64 0.74
Qctober 0.39 0.59 0.87
November 047 0.62 0.82
December 0.30 0.72 0.82

immediately preceding months. Two examples are given of how this might be
accomplished. The first involves using stepwise regression with a dependent
variable, the flow for the month in question, and with independent variables,
the predicted monthly flow using equation D for the month in question, and the
difference between the predicted monthly flow by equation D, and the observed
monthly flow for each other month, making twelve independent variables in
all. Thus our second stage is very much in the nature of a ‘corrector’, using the
predicted value for the month in question and the errors in prediction for the
previous months. Column 2 of Table 13 gives the multiple correlation
coefficients for this set of regressions which compare reasonably well with those
for equations B and C given in Table 11. However, it is the set of variables

Table 14 Variables selected for the ‘corrector’, first example

Jan. Feb. Mar, Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

January P P-O P-0O
February P-O P

March P-O0 P P-O

April P-O P-O P

May P-O

June P

July P-O0 P

August P-0

September P-O P

October P-O P
November p-O P
December P-O P
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selected by this stepwise regression which is the more interesting result from
this analysis.

Table 14 surnmarises the variables selected. For a given month (row),a Pina
particular column indicates that the predicted value for that month (column}
using equation D was selected as an independent variable and a P-0O indicates
that the difference between the predicted and observed values for that month
(column) was selected. Thus the dominant pattern is, in 8 out of 12 cases, the
selection of the predicted value using equation D for the month in question and
the difference between observed and predicted for the immediately previous
month as independent variables. This very simple structure may make this
particular two-stage procedure very easy to operate in practice.

As a second example, the set of independent variables used in the first
example was augmented by including the variables LDr and SDr
(r=1,2,...,12). Although this leads to a set of multiple correlations (column 3
of Table 13) which are very similar to those achieved with equation A (see Table
11, column 1) the set of variables selected (Table 15) is a more confusing
mixture than in the first example.

Table 15 Variables selected for the ‘corrector’, second example

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. COct. Nov. Dec.

January S P-O L
February P-O

March 3 P

April L

May S

June P

July L

August L L,S S, P-0O
September P-O L P

October P-0 L,S

November 1 P
December P-0 L

The notation used in Table 15 is the same as in Table 14 with the addition of
symbols L and S to indicate flow on the last day and second to last day
respectively. There is again a strong diagonal tendency in the table but the
pattern of the (P-O) variables is very haphazard. As one might expect, there isa
strong similarity in the months of the variables selected and the months of the
variables selected for inclusion in equation A (see Table 9). However, although
this second example produces the better set of multiple correlations, for
simplicity of predictor, the approach in the first example may be preferable. As
mentioned earlier, which predictor would actually be the simplest to use in
practice depends on many more factors than the mathematical complexity of
the equation suggested. However, having the objective of simplicity has been a
convenient way of demonstrating a variety of ways of using multiple
regression.
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POSTSCRIPT

Since this book was originally drafted, several computer packages of regression
programs have been introduced. The availability of these packages removes
many of the computational problems asscciated with the use of multiple
regression techniques. However, an understanding of the theoretical basis of
multiple regression techniques is as important as ever. A short reference list is
given to some computer packages which contain a substantial number of
regression programs. The list is by no means exhaustive, nor is it intended to
single out the ‘best’ packages. In addition, a further reference list is given to
some currently available regression books which may be used to supplement or
extend the material presented in this text.

Finally, some references are given to a few recently published research
papers. These may help to give some idea of the direction of current thinking
although the reader can gain a more complete picture by referring to Section
6.1 of recent issues of Statistical Theory and Methods abstracts, published by
the International Statistical Institute.
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