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Abstract. New analytical solutions describing the effects of 1 Introduction
small-amplitude perturbations in boundary data on flow in

the s_hallow-ice-sjtream approx_imation are presented. _T_heSEarge-scale ice sheet models commonly employ approxi-
solutions are valid for a non-linear Weertman-type sliding naiions to the momentum equations for increased compu-
law and for Newtonian ice rheology. Comparison is madeational efficiency. These approximations are derived from
with corresponding solutions of the shallow-ice-sheet ap-he fy|l-set of momentum equations through scaling analy-
proximation, and with solutions of the full Stokes equations. g5 motivated by the size of some geometrical aspect ratios,
The shallow-ice-stream approximation is commonly used 10g,cpy as ice thickness and ice-sheet span, and some expecta-
describe large-scale ice stream flow over a weak bed, whilgjons apout relative sizes of various stress terms. Currently,
the shallow-ice-sheet approximation forms the basis of MOst st jarge-scale ice sheet models are based on two different
current large-scale ice sheet models. It is found that they g of approximations, which in this paper will be referred
shallow-ice-stream approximation overestimates the e1°fect§0 as the shallow-ice-sheet (SSHEET) and the shallow-ice-
of bed topography perturbations on surface profile for wave-gyream (SSTREAM) approximations. The shallow-ice-sheet
lengths less than about 5 to 10 ice thicknesses, the exagfyroximation corresponds to the situation where surface-
number depending on values of surface slope and slip raparajiel shear stress in a shallow ice sheet are large com-
tio. For high slip ratios, the shallow-ice-stream approxima- pared to horizontal deviatoric stress. The shallow-ice-stream
tion gives a very simple description of the relationship be- 555 0ximation, on the other hand, assumes that the vertical
tween bed and surface topography, with the correspondingpeqy stress is small compared to all other stress components.
transfer amplitudes being close to unity for any given wave-gg of these approximations use the shallow-ice approxi-
length. The shallow-ice-stream estimates for the timescalegyation, i.e. they describe flow over horizontal scales large
that govern the transient response of ice streams to extesompared to the mean ice thickness. Derivations of the re-

nal perturbations are considerably more accurate than thosg,ting theories, often using slightly different scaling argu-
based on the shallow-ice-sheet approximation. In partiCUients can be found, for example Hiutter (1983, Morland

lar, in contrast to the shallow-ice-sheet approximation, the(1984) Muszynski and Birchfield1987), MacAyeal(1989
shallow-ice-stream approximation correctly reproduces the;,qBaral and Hutte(2007. ’ '

short-wavelength limit of the kinematic phase speed given

by solving a linearised version of the full Stokes system. In . . i Lo
y 9 y tify the errors introduced by these different approximations.

accordance with the full Stokes solutions, the shallow-ice- o
sheet approximation predicts surface fields to react WeakIyThe _denvafuons of th? S.SHI.EET and the SSTREAM approx-
Imations give some indications about their applicability to

to spatial variations in basal slipperiness with wavelengthsd.ﬁ i . it foll f le. f th |
less than about 10 to 20 ice thicknesses. erent flow regimes. 1t follows, for exampie, from the scal-

ings used in the SSTREAM approximation that the slip ratio,
the ratio between mean basal motion and mean forward de-
formational velocity, must be& (§—2), wheres is the ratio

Correspondence to: between typical thickness and horizontal span (see Appendix
BY

G. H. Gudmundsson (ghg@bas.ac.uk)  A). The errors are also expected to be of some order of the

It is clearly of considerable importance to be able to quan-
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78 G. H. Gudmundsson: Surface response in the shallow-ice-stream approximation

ratio between typical ice-thickness and horizontal scales okhown in Appendix A the shallow-ice-stream scalings results
the problem. For example, for the SSTREAM approxima- in
tion the errors ar@ (52). For a given problem of interest to 1m
a modeller itis, however, generally difficult if notimpossible 9x (#113xu+2hndyv)+3dy (hn(@xv+dyu)) —(u/c)
to come up with firm quantitative estimates of those errors. =pghdys cosa—pgh sina, (1)
A straightforward possibility of assessing the applicability 3, (4hndyv+2hndu)+dy (hn(avu+8xv))—(v/c)1/’"
of these approximations to situations commonly encountered”_ ’
) ) . . : =pghdys COS, (2)
in glaciology is to compare solutions to those obtained by
using the full-system momentum-balance equations (FS sowhich are two coupled partial differential equations for the
lutions). However, although possible in principle, the com- depth-independent horizontal velocity componentndv.
putational cost of a FS solution makes this approach, in mosin these equation is the surfacef: is the ice thicknessy
cases, impractical. A promising solution to this problem s the effective ice viscosityy the ice density, and is the
has been suggested Bblindmarsh(2004 who performed  basal slipperiness. The parameteiand the basal slipperi-
a computational analysis of various approximations used imessc are parameters in the sliding law defined by E&p)X
glaciology by comparing flow disturbances set up by smallin Appendix A.
perturbations in the ice surface. Focusing on small-amplitude For a linear viscous mediune£1) and a non-linear slid-
perturbations reduces computational times making direct esing law (= arbitrary but positive) these equations can be lin-
timates of absolute errors feasible. Another advantage thagarised and solved analytically using standard methods. We
comes from analysing small-amplitude solutions is the addedyrite f=f+Af, where f stands for some relevant variable
insight they can give into the nature of the approximations.entering the problem, and look for a zeroth-order solution
From the scaling analysis of the SSTREAM approximationwhere f is independent of andy and timer, while the first-
it is, for example, far from obvious how the relationship be- order field Af is small but can be a function of space and
tween bed and surface differs from that given by the SSHEETtime.
approximation, and how those descriptions in turn differ The perturbations in bed topographiX) and basal slip-
from the one given by the FS theory. One of the key ad-periness 4c) are step functions of time. They are applied at
vantages to come from analysing effects of small-amplituder=0, i.e. forr<0 we haveAb=0 and Ac=0. Fort>0 both
perturbations on flow is that by doing so fairly general an- Ab and Ac are some nonzero functions efandy. Using
swers to these questions can be given. this history definition, the solutions for the velocity field and
Here | present new analytical solutions to the shallowthe surface geometry become functions of time. The pur-
SSTREAM equations based on small-amplitude perturbatiorpose of introducing time varying basal perturbations is to be
analysis and compare them with corresponding FS analytiable to study the transient response of the surface to temporal
cal solutions given itsudmundsso(2003 andJohannesson  changes in basal conditions. As shown below the transient
(1992. Comparisons with analytical solutions based on theresponse is determined by two timescales: the phase time
SSHEET approximation are also made. The solutions arecale (,), and the relaxation time scalg), Both of these
valid for linear medium and small-amplitude perturbations in timescales are independent of the particular time history used
surface topography, bed topography, and basal slipperinessfor the basal perturbations. They are also independent of the
nature of the basal perturbation, i.e. exactly the same expres-
sions are obtained far, andt, for a perturbation in basal
topography as for a perturbation in basal slipperiness. Using
the superposition principle, solutions for more complicated
Stime histories can easily be constructed.

2 Linear perturbation analysis of the shallow-ice-
stream approximation

The method of comparing these solutions followed here i
to cast them in the form of transfer functions. These trans-

.~ 2.1 Bed topography perturbations
fer functions describe the transient response of the medium pograpny p

to perturbations in bed topography, surface geometry, angye start by considering the response to small perturbation
basal slipperiness. The starting point is the well-knownin pasal topographyAb). Writing h=h+Ah, s=5+As,
shallow-ice-stream equationglécAyeal 1989. The deriva- b=b+Ab, whereh is ice thicknesss surface topography,
tion of these equations is outlined in Appendix A. Further gnqdp bed topography, and=ii+Au, v=Av, w=Aw, where
examples of their derivations, using slightly different scaling u, v, andw are thex, y, andz components of the velocity
arguments, can be found elsewhere (dlgcAyeal 1989  yector, respectively, and=¢ wherec is the basal slipperi-

Schoof 2009. . . _ ness (see EAA5), inserting into () and @) and solving the
The analysis is done in a coordinate system tilted forwardregyting equations gives the zeroth-order solution

in the x direction by the angle, the mean surface slope. As B
i = cpghsina. )
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The zeroth-order solution represents a plug flow down anrespectively. The Fourier transformed mass-conservation
uniformly inclined plane. equation is

The first-order field equations are . )

_ _ _ — ik Au —il Av+ 9;Aw = 0. (12)
Anhds Au + 3nhos, AV + nhds, Au — y Au
! Ty _ Ty Y Equations {0) to (12) can now be solved fonx, Av and
= pghcosad, As — pg SinaAh, (4)  9,Aw. Vertical integration ofy,Aw and insertion into the

kinematic boundary condition at the surface

and
417}_18y2yAv + BnEBEyAu + nﬁafov —yAv Aw() = (r — ki) As, (13)
= pgh cosadyAs, (5) gives the surface response, and after some simple algebraic
manipulations, one finds that the (complex) ratio between

where surface and bed amplitud@s,=As/Ab is given by

1-m .

T ik(u

y=-— ©)  Tyk.l.r) = — KT T/E) (14)

m r(r—p)
and where
T4 = pgh sina, (7) p= i/tp _ 1/tra (15)

is the driving stress.

The domain of the first-order solution is transformed to
that of the zeroth-order problem. This is done by writing ,p—l = k(i + 14/8), (16)
f=f+Af+0, f Az where f is any given term that enters
the boundary conditions, amtilz is eitherAs or Ab. and

To.f'lrst order, the upper and lower boundary klnematlct_l — 1207 cota, (17)
conditions are 4

and the two timescaleg ands, are given by

and where furthermore the two abbreviations

0;As + 0y As — Aw = 0, (8)
and £=y+4hj%, (18)
9. Ab — Aw =0, @  and

2 _ 2, g2
respectively. Ing) the surface mass-balance perturbation has’ = k17 (19)
been set to zero. The jump conditions for the stress tensofsyve pbeen used.

have already been used in the derivation Hfgnd @) and An inverse Laplace transform of Eql4) using contour
do not need to be considered further. integration leads to

This system of equations is solved using standard Fourier o
and Laplace transform methods. All variables are Fourierst(k’ I,1) = Ik(u§ 4 7a) (" —1). (20)

transformed with respect to the spatial variablendy and

Laplace transformed with respect fo the time Vaf'ab"*” This transfer function describes the relation between surface

the forward Fourier transform the two space variables both
. ) . . and bed topography, where

carry a positive sign, and the wavenumbersciand y di-

rection are denoted by and/, respectively. In the forward  As(k, 1, 1)=T,p(k, [, 1) Ab(k, 1). (21)

Laplace transform the time variable carries a negative sign, _ S

and the complex Laplace argument is denoted by the variabl®ther transfer functions are defined in an analogous manner.

. In Gudmundssor{2003 the relaxation time scale is re-
The Fourier and Laplace transforms of the first order fieldferred to as the decay time scale and denoted by As
Egs. @) and 6) are pointed out byHindmarsh(2004), depending on the situa-
_ _ _ tion, the term “growth rate” is presumably more descriptive.
4nhk® Au + 3nhkl Av + nhi® Au+ y Au Here the term “relaxation time scale” will be used as the time
= pg Sina(As — Ab) + ikpghAs cosa, (10) scaler, determines how long it takes for the transient solution
to “relax” toward the steady-state limit.
and The relationship between surface velocity and bed topog-
Anhi? Av + 3nhkl Au + nik? Av + y Av raphy is found to be given by
=ilpghAs cosa, (11) Ty = k(kit — eP'(ip + kit)) (it& + t4)(p&) L, (22)
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80 G. H. Gudmundsson: Surface response in the shallow-ice-stream approximation

for the vertical velocity componentu), and 2.4 Non-dimensional forms of the transfer functions
T, = _ply + h(_k2 + 4i%))e? The transfer functions listed above are all in dimensional
hpvé form. It is often much more convenient to work with the
t4h cota (12t — k2iav)(1 — eP") transfer functions in a non-dimensional form. For this pur-
= . (23)  pose the same scalings as use@Girdmundssoi2003 will
hpvé SR . .
be employed. The velocity is given in units of mean de-
and formational velocity of the full-system solution. All spa-
klta(3pne? + (eP" — 1)(@v + t4) cota) tial scales are in u_nits of mean ice thicknesy @nd stress
Ty = , (24) components in units of driving stresg;}. It follows from
pvs these scalings that the non-dimensional viscogityis given
where by E=iign/(hts)=1/2, and the mean non-dimensional basal
b=y + hjzn, (25) slipperines< is

A Mg ==
for the longitudinal ) and the transverse) components, C=crg/ua=ip/ia.

respectively. The mean non-dimensional slipperiness is therefore equal
) ) ) ) to the slip ratio, i.e. the ratio between mean basal sliding
2.2 Perturbations in basal slipperiness velocity (i7,) and the mean forward deformational velocity

(#4). One obtains the non-dimensional form of the transfer
Stunctions from the dimensional one usmg the substitutions
»—>Cnr—>l/2h»—>1ur—> k= kI — 1,
— (mC)~1, andpgh sina — 1.

Note that since in the shallow-ice-stream approximation
iiy=0(8% and we are ignoring all fields to this order, we
haveu — C and notu — C+1 as is the case for the full-
system solutions and the solutions of the shallow-ice-sheet
We now determine the transient evolution of a surface un-2pproximation. Furthermore, fro = uy/uq it follows
dulation prescribed at=0. By writing h=h+As, s=5+As, thatC = 0(572). In these non-dimensional units, the re-
b=b, u=i+Au, v=Av, w=Aw, andc=¢, inserting into {) quirement that the slip ratio i® (572) for the shallow-ice-
and @) and solving the resulting equations together wit®)(  Stream approximation to be valid impli€st-1~C or C>1

Transfer functions describing the effects of spatial variations

in basal slipperiness on surface geometry and surface veloc:-
ities can be derived in a similar fashion. In Appendix B the
solution procedure is outlined and expressions for the corre?
sponding transfer functions listed.

2.3 Surface perturbations

and the kinematic boundary condition at the surface for small surface slopes.
o In non-dimensional form the solutions often take a con-
w=rAs —ikuAs — st = 0), siderably simpler shape. For example the non-dimensional

forms of the timescales, andt,, and the transfer function

it is found that the surface evolution as a function of time is .
Ty, are, respectively,

given by
_ 2 A -1
sk, 1, 1) = Tysgs(k, 1,1 = 0), @26) r=@+(mC) )tane,
where Tl kCA 4+ —— ),
P ( 142 jsz)
Ty, = €. (27)
and
The velocity components are given by 5=
. 5- L sz k(1+(1+2‘]2C)m) (1_eif/fpe*f/fr)
Twso = (ik — j°h cota)tg& P’ (28) "7 k4 m(k + 2kj2C +ij2cota) '
—— (v A+ V) + hn(G2y + k2 + 412)) o - Note th.at.in all of these thrge expressions, the ;hprt wave-
uso = ve e, (29)  length limit ( and/— +o0) is independent of the sliding law
exponentn.
where
v = ikh cota, (30) 3 Discussion
and The main subject of the following discussion is a compari-
il(3ikn + v cota) 1y pt son of various SSHEET, SSTREAM and FS small-amplitude
Toso = VE e (31) solutions. The SSHEET solutions are known for non-linear

medium and a non-linear sliding laviNye, 196Q Fowler,
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Fig. 1la. The phase speedv(,|) as a function of wavelength for Fig. 1b. Thex component of the group velocity §) as a function
#=0. The dashed-dotted curve is based on the shallow-ice-sheetdf wavelength fov=0. Values of mean surface slope and slip ratio
(SSHEET) approximation, the dashed one is based on the shalloware 0.005 and 30, respectively, anetn=1.

ice-stream (SSTREAM) approximation, and the solid one is a full-

system (FS) solution. The surface slopeis0.005 and slip ratio

C=3Q andn=m=1. The unit on the y axis is the mean surface IV, = (jtp)*l — cosd (ﬁ + Td__ ) , (32)
velocity of the full-system solutioni=C+1=31). y +4j2hy

in dimensional units. The angteis the angle between the
1982 Johannessgnl992. Small-amplitude FS solutions Wave vectork=(k, /) and the x axis. This is also the angle
have so far only been derived for linear medium and a lin-between ther axis and a vector lying in they plane and
ear sliding law Reeh 1987 Johannessari992 Gudmunds- normal to the crests of the sinusoidal perturbations. We have
son 2003. The SSTREAM solutions, derived here for the C0s9=k/j andi=2r/j wherex is the wavelength.
first time, are valid for linear medium and a non-linear slid- It is instructive to compare phase speeds for different ap-
ing law. It follows that direct comparision betweeen the Proximations. Figurdashows the phase speed to+0 as
SSTREAM and the FS solutions can only be donerferl a function of wavelength for the shallow-ice-stream approx-
andm=1, and for this reason most of the discussion is lim- imation (dashed line), the shallow-ice-sheet approximation
ited to this case. The only exception is a brief description(dashed-dotted line), and for the full-system solution (solid
given below of the relationship between bed and surface geline) for m=1 andn=1. Note that in the figure the phase
ometry in the SSTREAM approximation for non-linear slid- speeds have been normalised by the surface velocity as given
ing law. A full discussion of the non-linear aspects of the by the full-system solution (equal ©+1 in non dimensional

solutions will be done elsewhere. units).
In the shallow-ice-sheet (SSHEET) approximation the
3.1 Time scales phase speed (dashed-dotted curve in Eg)y.s, for 6 fixed,

independent of the wavelength. Fb£0 the SSHEET phase
As seen from the solutions listed above and in Appendix Bspeed ign+1)ug+(m+1)up, whereu, is the deformational
the transient behaviour is completely determined by two timeve|ocity andu; the basal sliding velocity. This is a well
scales: the phase time scaje and the relaxation time scale known (Nye, 1960 and often used expression for the speed
ty. The term “phase time scale” is used fgrbecause it de-  of surface waves of on glaciers. The long-wavelength limit of
termines how quickly the phase of the surface fields changethe SSHEET phase speed is correct, but the short wavelength
with time (see for example Eq26 and27). As mentioned  SSHEET limit is incorrect. The FS limit fa¥=0 asr—0 is
above the, time scale determines how quickly the solutions IVp|=uq + up, i.e. for short wavelengths the kinematic wave
“relax” toward the steady-state limit. speed equals the surface velocity.

The properties of the phase time scale can most easily be As can be seen from direct inspection of Eqg2)(and
understood by looking at the phase veloaifywhich is, by Eqg. (90) in Gudmundsson2003 - giving |v,| for the
definition, given by, =((kt,)71, (It,)7). The SSTREAM  SSTREAM and the FS theories, respectively — and as illus-
phase speed is trated by Figla the SSTREAM phase speed (dashed curve)

is quite similar to the FS phase speed 1. In particu-
lar, in contrast to the SSHEET phase speed, the SSTREAM
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Fig. 2a. The phase speedv(,|) of the full-system solution as a

function of wavelength. and orientatiory of the sinusoidal per-  Fig. 2b. The shallow-ice-stream phase speed as a function of
turbations with respect to mean flow direction. The mean surfacewavelengtha and orientatiors. As in Fig. 2athe mean surface
slope ise=0.002 and the slip ratio i€ =100, andn=m=1. The slope ise=0.002 and the slip ratio i€=100, n=m=1, and the
plot has been normalised with the non-dimensional surface velocityplot has been normalised with the non-dimensional surface velocity
#=C+1=101 of the full-system solution. i=C+1=101 of the full-system solution.

phase speed given by E@2), valid for any positiver and One finds that in the SSTREAM approximation thand
n=1, is notindependent of. Ther—+oo SSTREAMIimit  the y components of the group velocitfy,, v,), are given
is |v,|=i(14m) cosh, which agrees with the FS limit for by
ug=0. Forr — 0 the SSTREAM phase speed is equal to s or
the mean surface speed, again in an agreement with the F5 _ ;7 | y +4d° — k_ Vhnta (33)
theory. Hence, in both the—0 and the. — +oo limits, the # (y + 4j2hn)?
SSHEET phase speed is equal to the FS phase speed.

The differences between the FS and the SSTREAM phase _
speeds are small for parameter values typical of an active ice 8klhnty (34)

stream. This can be seen most easily from direct inspectiorll)g T (y +4j2hn)2
of the differences betweep given by Eq. 16) and Eq. (73)

in Gudmundssoii2003. Figures2aand b show the FS and
the SSTREAM phase speeds ), respectively, as a func- . ) . :
tions of both wavelength and the angl® for C=100 and slope and slip ratio values as use_d n Fl@‘ The figure
«=0.002. Fori held constant the phase speed decrease§hOWS that the SSTREAM expression &yris & much better

: . approximation to the FS solution than the one given by the
monotonically as function of and, as expected, goes to zero L
asf — /2. Comparison of Fizaand b reveals only minor SSHEET approximation. In fact the SSHEET group veloc-

differences. ity does not look anything like the FS solution, whereas the

The wavelength dependency of the phase velocity givesSSTREAM solution traces the FS solution quite accurately

rise to dispersion in the FS and the SSTREAM solutions.(See Fig1b). NOt? alsq that, for th? particular values of sur-
In these theories it is therefore somewhat misleading to in_:‘ac_? sllope aﬂd il;]ppetr;]ness used '? the EEtg.tr&efgroup vle— th
terpret the phase velocity as the velocity by which surface ocity 1S smaller tnan the mean surlace speed for waveleng

. L between 8 to 50 mean ice thicknesses.
disturbances propagate. The group velocity is a better mea- ) . . ) L
propag group y In Fig. 3 the relaxation time scale,{ is plotted in dimen-

sure of this velocity, and as shown Gudmundsso2003 sional units (years) as a function of wavelength é£100

the FS group velocity can be significantly different from the nda=0.002 andm—1. (Note that the relaxation time does

fhhea;ea;/:rli(;fg"?gg efsglf)(c):ri]tqye wavelengths even smaller thaﬁot depend on the angte) As indicated by the figure, and

direct inspection of the corresponding equations shows, the
SSTREAM relaxation time scale closely approximates the
FS relaxation time scale down to wavelengths of about 10
ice thicknesses. Of particular interest is the fact that in ac-
cordance with the full-system solution, but in contrast to the

The x component of the group velocity is shown in Fidh
for m=1 as a function of wavelength for the same surface
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Fig. 4. Steady-state response of surface topograpty {o a per-
turbation in bed topography\¢). The surface slope is 0.002, the
mean slip ratioC=100, andn=m=1. Transfer functions based
on the shallow-ice-stream approximation (dashed line 28p.the
shallow-ice-sheet approximation (dotted line, Eq. 1&idmunds-

Fig. 3. The relaxation time scale,{ as a function of wavelength
A. The wavelength is given in units of mean ice thicknegsand
t- is given in years. The mean surface slopes0.002, the slip
ratio is C=999, andn=m=1. For these values is on the order

Of. 10 years for a fairly wide range of wavelenths. Lowermg the son 2003 and a full system solution (solid line, Eq. 75 Gud-
slip ratio will reduce the value aof.. It follows that ice streams will
mundsson2003 are shown.

react to sudden changes in basal properties or surface profile by a
characteristic time scale of a few years.

3.2 Bed topography perturbations

SSHEET approximation, there is a range of wavelengths ove
which the SSTREAM relaxation time scale is independent of
A (see Fig.3). The only qualitative aspect af not captured

by the SSTREAM approximation is the increases,imith

A decreasing fon less than about ten ice thicknesses. For
gjrﬂiiiﬁt)tfrs ;g}ﬁgﬁfg{;ﬂ%;ﬁ iseziggxesnowlt%g slip ratio (C=100) values are typical for active ice streams.

SSHEET solution. For the particular set of parameters useJhe three curves differ in a number of 'mpofta”t ways. -
in Fig. 3 both the SSTREAM and the FS solutions give, for The steady-state SSHEET transfer amplitude (dotted line

the range 1B<1<100%, a constant value fay. on the order in Fig. 4) is a strictly increasing function of wavelength and

of ten years. The SSHEET solution gives, for the same rangé’oes not show the pronounced peak in bed-to-surface transfer
values, estimates of ranging from hours to days for wavelengths from about 1 to 10 ice thicknesses seen in FS

Of the two time scales andr, it can be argued that is solution (solid line). ) ) )
the more important one. A surface wave will travel a distance 1€ SSTREAM solution (dashed line) overestimates the

equal to its wavelength in the timer2,. In the same time its transfer at short wavelengths and gives a physically wrong

amplitude will decrease by the factefir/tr (See Eq27). limit of |Ty,| — 1 for A—0. Dgspite the.incorrect.linjit
The ratio 2r7,/1,, thus, can be thought of as giving the rela- for 4 — 0, the SSTREAM solution foff, is, and this is
tive importance of relaxation/diffusion to wave propagation. 9€nerally the case for high slip ratios, a considerably bet-
As pointed out byJohannesso(1992 this ratio is, for typ- ter approximation to the FS solution than the corresponding
ical situations encountered in glaciology, usually larger thanoSHEET solution. For the particular set of values used in
one. It follows that the time scale for local mass redistribu- F19- 4 the SSTREAM solution agrees within a few percent to
tion on glaciers and ice sheets is essentially giver bgnd the FS solution down to wavelengths of about eight ice thick-
takes place much faster than the time scaleould suggest. nesses, while the SSHEET solution is only similarly accurate
The close agreement betweeras given by the FS and the for wavelengths larger than about 100 ice thicknesses.

as calculated on basis of the SSTREAM approximation gives From Eq. @0) it follows that the steady-state SSTREAM
added confidence in the applicability of the SSTREAM ap- fransfer function for/=0 is

proximation to situations typical of active ice streams. 1

Tb = T Tweoa (35)

1+m(1+2Ck2)

[:igure4 shows the steady-state bedrock-to-surface transfer
amplitude (7,|) as a function of wavelength. The figure
shows the FS, the SSHEET, and the SSTREAM transfer
amplitudes, respectively (based on Egs. 82 and 26 in Gud-
mundsson, 2003, and E2Q). Surface sloped(=0.002) and
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18— using Eq. (82) inGudmundsso2003. The times are given
R in non-dimensional units. These can be translated to di-
BN Aoomaiontor ] ional units through multiplication with/iiy, wh
L e a0 mensiona units throug mutlplcathn with/ii;, where
14f ! \/ 1 ig is the mean deformational velocity. As an example,
\

Lolt i | for a 1000 m thick ice stream where the surface velocity is
! ‘ 1md1, r=0.001 corresponds to about 3.3 months.
The figure shows the relatively slow increasey, | with
time for long wavelengths (larger than about 100 mean ice

\
"

ﬂ'“'::'||'|" hr
Vi

Jvy s

-
"

Tyl
-

N

-

0.8 4
\ ¢ thicknesses) toward the steady-state long-wavelength limit of

I
0»61: s\ \ i |Ts»|=1. The rate of increase toward the steady-state limit
' Soluton \ ] is determined by, which, for long wavelengths, increases
quadratically as a function of wavelength (see Ed.and

041 for t=10,

t=0.01,
and t=0.001

o2r AR ) Fig. 3), hence the slow increases |ffi;,| for long wave-
0 L T lengths. Over wavelengths less than about 5 mean ice thick-
o o w0 o w0’ ' nesses the SSTREAM relaxation time is smaller than the FS

A(H)
relaxation time (see Fig8). Consequently, over this range

Fig. 5. Transient surface topography response to a sinusoidal perturof wavelengths the SSTREAM amplitudes grow faster with
bation in bed topography applied=t0. Shown are the amplitude time than the FS amplitudes. Another noticeable aspect of
ratios between surface and bed topograpiy,() as a function of  Fig. 5 is the oscillating behaviour of the transfer amplitudes
wavelength forr=0.002,0=0, C=100, andr=m=1 for 1=0.001  wijth wavelength. These are caused by temporal fluctua-
(red),r=0.01 (blue), and=10 (green). tions (kinematic oscillations) ifTy;| that are governed by
the phase time scalg. As the figure shows, transient am-
plitudes can be larger than unity, and when this happens sur-
face topography amplitudes are larger than the bed topogra-
phy amplitudes. As follows from inspection of EQQj and

Eqg. (82) inGudmundssorf2003, kinematic oscillation are

where dimen_sionless units have been used. Hencg=f0r
T, — 1 asC — oo irrespective of the values for surface
slope«a, wavelengthi, and sliding law exponent. The

value ofC=100 used in Fig4 can hardly be considered very particularly pronounced for 8 <i, wheneverr,<i,. The

large for typical active ice streams, and if a valu&is£1000 consequence can be an up to twofold increase in transfer

is used together with typical surface slopes of about 0.002 : i i
10 0.004, it follows thatT,s| is fairly close to unity for al amplitudes as compared to the corresponding steady-state

limit. As mentioned above, the steady-state-0 limit of
wavelengths.

- . . . the SSTREAMT;, amplitude is unity, and for short wave-
The minimum in the SSTREAM transfer amplitude given lengths {/h<1) the transient value can be as large as two,
by Eq. 35) is reached for the wavelength

whereas the correct value for these wavelengths (as given by
_ the FS solution) is always close to zero.

=27 ZC_’” (36) The Ty, transfer amplitudes in Figgt and 5 are plot-
1+m ted as functions of longitudinal wavelength, that is for si-
wherek, =27, and the minimum is given by nusoidal variations in bed topography aligned transversely
to the main flow direction. This corresponds to the situa-
min | Ty | = 1 . (37)  tion #=0. Figure6aand b show the SSTREAM and the
k 1+ % FS transfer amplitudes, respectively, as functions of lsoth

andx. As Fig. 4 showed ford=0, the main difference be-
For bed topography variations aligned transversely to theween the SSTREAM and the F$, amplitudes is the short-
main flow direction, the steady-state ratio between surfacevavelength limit. Irrespectively of the SSTREAM short-
and bed topography amplitudes is in the SSTREAM approx-wavelength limit is always equal to unity, whereas the correct
imation always larger than that given by EQ7). The wave-  limit is zero. The only exception is for the = 7 /2 where
length given by Eqg.36) does not depend on surface slope both transfer functions are identically zero.
a. As Fig.4 suggests, the (global) minimum in SSTREAM  In Fig. 7aand b theT,, transfer amplitudes of, respec-
transfer amplitude |{§,|) closely approximates the corre- tively, the SSTREAM and FS solutions are shown in a non-
sponding (local) minimum of the FS transfer amplitude for dimensionalised form. A simple way of interpreting the nu-
C>»1. merical contour values is to think of them as ratios between

Examples for non-steadf, amplitudes are shown in mean deformational velocity and mean ice thicknagg k).

Fig. 5. The dashed lines in the figure are calculated us-In the figures, a slip ratio of 99 is used and the mean sur-
ing Eg. RO) and are based on the shallow-ice-stream ap-face FS velocity is equal to 101;. For example, a transfer
proximation, using the additional small-amplitude assump-amplitude equal to 50 implies that a sinusoidal bed topog-
tion Ab/h«1. The solid lines are FS solutions calculated raphy perturbation with an amplitude corresponding to 10%
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login(\) () logiy (V) ()

Fig. 6a. The SSTREAM amplitude ratio/T;,|) between surface  Fig. 7a. The steady-state amplitude rati@(;|) between longitudi-
and bed topography (EGQ). Surface slope is 0.002, the slip ratio nal surface velocity4u) and bed topography\p) in the shallow-
C=99, andn=m=1. 1 is the wavelength of the sinusoidal bed to- ice-stream approximation as given by E§3), Surface slope is
pography perturbation ardis the angle with respect to the x axis, 0.002, the slip ratio is 99, ang=m=1.

with 6=0 and6=90 corresponding to transverse and longitudinal
undulations in bed topography, respectively.

10.6

10.5

10.4

log;o (M) (h)

logyo(A) (h) Fig. 7b. The steady-state amplitude ratif¥,;|) between longi-
tudinal surface velocityA«) and bed topographyAp) (Eq. 75 in
Fig. 6b. The FS amplitude ratio between surface and bed topograGudmundssor2003. The shape of the same transfer function for
phy (7sp|) from Eq. (75) inGudmundssorf2003. The shape of the same set of parameters, but based on the shallow-ice-stream ap-
the same transfer function for the same set of parameters based gmoximation, is shown in Figa
the SSTREAM approximation is shown in Figa

tudes tend to be somewhat underestimated by the SSTREAM
of the mean ice thickness produces a perturbation equal tapproximation when the shallow-ice conditiofz>>1 is not
0.1x50=5i14, or a 5 % perturbation in surface velocity. fulfilled.

As the Fig.7aand b suggest, and inspection of the corre-  For bed topography disturbances running along the flow
sponding analytical solutions confirms, the short wavelength(k=0) the resulting perturbation in surface velocity is, irre-
limits of the SSTREAM and the F§,;, transfer amplitudes  spectively oft, given by
are both equal to zero. This is physically the correct limit
and there is therefore no problem similar to that of Thg 2mC

transfer amplitude fox — 0. Quantitatively thel,, ampli- ~ lub = o PG (38)

www.the-cryosphere.net/2/77/2008/ The Cryosphere, 29372008



86 G. H. Gudmundsson: Surface response in the shallow-ice-stream approximation
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Fig. 8a. The steady-state amplitude rati(,|) between transverse 19 9. Steady-state response of surface topography to a perturba-
velocity (Av) and bed topographyA() in the shallow-ice-stream tion in bed topography for linear and non-linear sliding. All curves

approximation (Eq24). Surface slope is 0.002, the slip ratio is 99 @€ for linear mediumsx(=1). The solid lines are calculated for
andn=m=1. linear sliding (»=1) and the dashed lines for non-linear sliding

(m=3). The red lines are SSHEET solutions, the blue ones are
SSTREAM solutions, and the black line is a FS solution which is

% 10 only available forn=1. Mean surface slope is 0.002 and slip ratio
80 20 is equal to 100.
For the transverse velocity amplitudgg,(|), shown in
Fig. 8aand b, a qualitative difference between the FS and
the SSTREAM solutions is found fdt close tor/4. For
O 0=m/4 the SSTREAM transfer amplitud&,,| has one lo-
cal maximum as function of but the FS solution two. Again
the SSTREAMT,, amplitudes are somewhat underestimated
when the shallow-ice conditioh/>>1 is not fulfilled. For
the particular set of parameters using in Fig.and b, and
Fig. 8aand b the SSTREAM approximation underestimates
the effects of bed perturbations on surface velocities for
O0 0.5 1 15 2 - 25 3 3.5 4
) (h)

[o2] ~ fec}
o o o

a
o

6 (deg.)

wavelengths less than about 10 ice thicknesses.
logyg

3.2.1 Surface topography and non-linear sliding
Fig. 8b. The steady-state amplitude rati@(;, | between transverse
velocity (Av) and bed topographyAp) ) from Eq. (75) inGud- The discussion given above has mostly dealt with/thel
mundssor(2003. The shape of the same transfer function for the andm=1 case. In Fig9 the SSHEET and the SSTREAM
same set of parameters, but based on the shallow-ice-stream approtios between surface and bed topography amplit|igg|)
imation, is shown in Figda are plotted forn=1 andm=3 for n=1. In addition the FS
ratio is shown form=1. There are no analytical FS solutions
. . . known form # 1. The SSTREAM ratios shown (blue lines
as can readily be derived from EQJ. The maximum value in Fig. 9) follow from Eg. 0), the FS ratio (black line) from

Of |T,ip| is reached fok=0 in the limitA — oo. In the FS Eqg. (82) in Gudmundssor{2003, and the SSHEET ratios
theory this limit isC+1 which is the physically correct limit. (red lines) from Eq. (4.4.7) idohannessof1992

n thﬁ SST'EEAM theoré/ this I|g|t 'r? ' ;9?:1 Whiref th%se As theJohannesso(1992 thesis is presumably not widely
results can be compared, equaipthe difference being due available | list here his SSHEET expression for fhgtrans-

:ﬁ thet3|mpllg fa::jt tfhat th? SSTREAM approximation IGNOreSfar function. It is particularly simple and valid for any value
€ internatice detormation. of n andm. It can be written in the form
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T, ! (39) 0.5
sh= > ' ‘ 0P
I —A*/A ousl c=1and c:10—0390
©]
where 04t Full System Solution E
O  Shallow Ice Stream Approximation
(";”_:'21) + mC) 0.351 +  Shallow Ice Sheet Approximation
Y= cota, (40) 03
n+1+Cim+1) =
is in units of mean ice thickness. The long and the short 5 **°

wavelength limits of SSHEET transfer amplitude as given by
Eq. 39) are independent of andm, and the range of wave-

lengths where the transfer is, in absolute terms, significantly

dependent on andm is determined by the value af. For
moderate values of and high slip ratios@ > 1) we have

~
~

A.*

m
Coto.
m+1

0.2F

0.15

10*

Hence, the surface slope is the most important parameter afig. 10. Steady-state response of surface topography to a basal slip-
fecting the SSHEET bed-to-surface transfer characteristicgeriness perturbation. Shown are FS (solid line), SSTREAM (cir-

for high slip ratios and the transfer is only moderately af-
fected by the value of:.

One of the most interesting aspects of Fgis that the
differences between the=1 and then=3 cases are only of

cles), and SSHEET (crosses) transfer amplitudes for Geth and
C=10. In the plot the SSTREAM curves fa@t=1 andC=10 are
too similar to be distinguished. The surface slope is 0.002.

any significance for wavelengths longer than about 100 ice3.3 Basal slipperiness perturbations

thicknesses. This is the case for both the SSHEET and th
SSTREAM solutions. By analysing the SSTREAM trans-
fer function given by Eq.40) it is found that the sensitivity

of |Ty,| to m is small at both large and small wavelengths

e
We now consider the effects of spatial variations in basal slip-
periness on surface fields. Basal slipperiness is here defined
as the functiorr(x, y) in the basal sliding law (see EA5).

and decreases with decreasing slope. In particular, for waveFhe non-dimensional slipperiness is written using an upper

lengths smaller than the wavelength for which the minimum
in SSTREAM amplitude is reached (see B§), the transfer
amplitudes are not significantly affected by the value of the
sliding law exponent:.

No analytical FM solutions form>1 are known, but
a numerical study byRaymond and Gudmundss¢a005
showed that changing from 1 to 3 has almost no effect on
FS transfer amplitudes for wavelengths smaller thaiven
by Eq.36. The insensitivity ofTy; to the value of the sliding
law exponenin for wavelengths smaller than the one given
by Eq. 36) may, thus, well be a general feature of glacier
flow. Schoof(2009 gives arguments suggesting that at high

case letter (i.eC(x, y)). We haveC(x, y)=c(x, y)ta/id,

and write C(x, y)=C(1+AC(x, y)) where C is the spa-
tially averaged slipperiness antiC(x, y) the (fractional)
slipperiness perturbation introduced rat0. The transfer
functions listed in Appendix B give the relationships be-
tween surface fields and the basal slipperiness perturba-
tion AC(x, y) in frequency space. We have, for example,
s(k, 1, t)=T;. AC(k,1). Again our main focus here is on the
differences between the corresponding SSHEET, SSTREAM
and the FS solutions and therefore the discussion is mostly
limited to them=1 andn=1 case where small-amplitude an-
alytical solutions to all of FS, SSHEET, and the SSTREAM

slip ratios the surface response becomes independent of tHgoblems are available.
form of the sliding law. The results presented here, and those Figure 10 shows basal-slipperiness to surface geometry

of Raymond and Gudmundss¢2005, show this only to be
a good approximation for a limited set of wavelengths. The

transfer amplitudesTt.) based on Eq.B3) (circles) for the
SSTREAM theory. For comparison the predictions of the

source of the discrepancy is not entirely clear, but possiblyFS (solid lines ) and the SSHEET (crosses) theories (Egs. 83

due to the implicit assumption i8choof(2005 that shear

stress is independent of short-scale perturbations in basal vare shown as well.

locities (Eg. 3 inSchoof 2005. On length scales on the
order of one ice thickness or smallchoof (2009 results
agree favourably with those presented here.

www.the-cryosphere.net/2/77/2008/

and 27 inGudmundssarn2003 for the same parameter set
Because the SSTREAM solution does
not include the contribution of internal ice deformation to
the forward surface velocity, the SSTREAM and the FS long
wavelength limits fol T | are not equal. Both the FS and the
SSHEET long wavelength limits.( oo for 6=0) are equal

to C/(2(14+C)). For the SSTREAM solution this limit is, on
the other hand, equal to 1/2 independently'asee EqB7).

For C>>1 these two different expressions, of course, give nu-
merically quite similar answers.
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Fig. 11. Steady-state response of surface longitudindl {rans-
verse (), and vertical {v) velocity components to a basal slipper-
iness perturbation. The surface slope is 0.002 and the slip rati
C=10. TheT,, and T, amplitudes are calculated for slipperiness
perturbations aligned transversely to the flow directiéa ). For
Tye, 6=45 degrees. Of the two y axis the scale to the left is for the
horizontal velocity componentdy. and T,.), and the one to the
right is the scale foff},..

Fig. 12. Steady-state response of the surface longitudinal) {re-
Aocity component to a basal slipperiness perturbation in the shallow-
ice-stream approximation (E&4). The surface slope is 0.002 and
the slip ratioC=99.

Over wavelengths less than about 100 ice thicknesses the
horizontal forward velocity component) reacts weakly
to basal slipperiness perturbations. In Fid, for exam-

Figure 11 shows the velocity transfer amplitudés,.|, ple, the FST,,. transfer amplitudes (solid line) are less than
|Tvel, and|T,,c|. Shown are both the FS solutions (solid lines) 5% of mean surface speed for this wavelength range. The
and those based on the SSTREAM approximation (dashe®STREAM approximation further underestimates this weak
lines). The SSTREAM solutions are given by E@4), (B5) response (see Fid.1). In comparison to the FS amplitude
and B6). The FS solutions can be found, or easily derived,the SSTREAMT,,. amplitudes are, on the other hand, too
from Gudmundssoi2003. The transfer functions are plot- large (see Figll). This difference is in most situations of no
ted in non-dimensional form. The scale for the transfer func-real concern, however.
tions follows from the definitionau=7,.AC, Av=T,.AC, The most conspicuous aspect of both the FS and the
whereAC is the (fractional) slipperiness perturbation. Since SSTREAM T, transfer amplitudes is how small they are
the velocity is scaled with the mean deformational velocity both in absolute terms and in comparison/Zp.| and|Ty.|.

ii; andAC has no dimensiongy is the scale for these trans- In fact the|T,.| amplitudes are so small that for active ice
fer functions. streams the vertical velocity component can be considered
Generally speaking there is a good agreement between thi@ be effectively insensitive to any spatial variations in basal

velocity transfer functions of the FS and the SSTREAM solu- slipperiness. As an example, {6e=10 andx=0.002, which
tions (see Figl1). However, there are also a number of sig- are the values used in Figl, the maximum of the F3,,.
nificant differences. The SSTREAM long-wavelength limit amplitude is about 0.025. The corresponding perturbation in
of T, is, for example, not the same as that of the FS theorythe vertical surface velocity component is therefore 025
For n=1 andm=1, and6=0 we find that the SSTREAM which for most active ice streams, where the surface veloc-

solution gives ity is a few hundred to a few thousand times larger than
1 is negligible in comparison to the mean horizontal velocity.
lim 7,, = =C, In contrast, the maximum perturbation in longitudinal veloc-
A0 2 ity (u) is C/2 for C>>1 or about 50 % of the mean surface
while the FS solution gives velocity, and as can be seen from Fid. or direct inspec-
-> tion of Eq. B5). Equally large perturbations in transverse
lim 7, = ¢ _ velocity are possible for perturbations in basal slipperiness
A—o00 21+0) that are sufficiently misaligned with respect to the mean flow

The effects of basal slipperiness perturbations are thereforg'reCt'on'

somewhat overestimated for long-wavelengths, although for
high slip ratios typical of active ice streams this error is small.
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The transfer amplitud@&,. describing the response of the showing that the long wavelength limit fer=0 is always
horizontal forward velocity component)to a basal slipper- smaller than that foé=x/2 and, furthermore, goes to zero
iness perturbation is shown as a function of wavelengjh ( with increasingn.
and orientationd) in Fig. 12. This Figure should be com- Raymond 1996 calculated the effects of longitudinal per-
pared to Fig.7agiving theu response to a bed topography turbations in slipperiness on surface velocity on ice streams
perturbation for the same set of parameters. A noticeabl¢d—=x/2). In the dimensionless notation used here his result
difference betweef,;, andT,. amplitudes is the compara- (Eg. 25a inRaymondg 1996 is
tively weak response af to perturbation in basal slipperi- -
ness that are aligned approximately transversely to the meap, .(k = 0, /) = _Z—C
flow (6<40 degrees) for wavelengths less than about 100 2+ Cltanh/
ice thicknesses. However, for a given wavelength, the magfFromGudmundsso(2003 one finds after some calculations
nitude of the perturbation in caused by a perturbation in that the FS expression is
basal slipperiness increases sharply wiilsee Fig12). For -
a sinusoidal slipperiness perturbation closely aligned withy, « — 0, 7) = 2C_ .
the mean flow directiond>70 degrees) the resulting per- 2 coshl + CI sinh]

turbation in forward velocity can become a sizable fraction Raymond(1996 considered the cages1 and consequently
of the total perturbation in slipperines§ C). For exam- o form of the basal boundary conditions used by him is

ple, Fig.12 shows that a sinusoidal basal slipperiness pertur-s"ghﬂy different from the one used Budmundssof2003.

bation with wavelengtt.=100 has almost negligible effect g explains the difference between Egsf)(and @5).
onu if it is aligned transversely to the mean flow direction |, <ontrast to Eqgs.44) and @5), Eq. @1) is not limited
(6=0), while the perturbation in is almost equal to the total to linear sliding law but valid for any positive value of.

perturbation in slipperiness f6.=90 degrees. Where Egs. 41), (44), and @5) can be compared, i.e. for
In Appendix B the SSTREAM version of th&, transfer 1 the difference between these three expressions is in

function is derived. From EqB@) we find that for pertur- 45t cases small. In particular, all expressions give the same
bations in basal slipperiness that vary across the flow, i.€}imits for7 — 0 I— 400 for € fixed, andC— 0 for ! fixed.

6=m /2 andk=0, the transfer function is For C— +oo0 the limits are not identical but fdr 1 the dif-
¢ ference is small.
(41)

~ 2+mi2C’ 3.4 Flow over Gaussian peak: the ISMIP-HOM Experi-
ment F

(44)

(45)

uc

for anyt. Interestingly, as Eq.4Q) shows, the response of

the velocity to temporal changes in basal slipperiness PETAs an illustration of differences between the full-system
turbations aligned with the mean flow direction is instanta- and the shallow-ice-stream solutions Figaand b show

neous. Note furtherm%re that S!n@f_zA”{]AC bﬁ]/ defini- ba 2" example of the surface response to a Gaussian-shaped
tion, T,,=C corresponds to a situation where the perturba-pe 4, protuberance calculated using both the FS and the

tion in surface velocity is equal, in non-dimensional units, to SSTREAM transfer functions. The parameters of the exam-
the (total) perturbation in basal slipperiness. This can be con- :

. S i _ le are motivated by the definition of the Benchmark Ex-
sidered to represent a full transmission of basal sllppermesg

h ‘ locity field h lonaitudi eriment F for higher-order ice sheet models of the ongo-
to the surface velocity field. As Eq4{) shows, longitudi- 3,010 el intercomparision project ISMIP-HOM (shp:
nal basal slipperiness perturbatiofs=£ /2) have, in this

tull eff he : oci /lhomepages.ulb.ac.bdpattyn/ismipj. Of the mean sur-
sense, full effect on the forward surface velocity componentg, .o velocity, half is due to internal ice deformation and the

(u) in the limit A—oo. Note also that fok=0 the limit of ~  yynor naif to basal slidingd=1). The flow is down an uni-
Tuc Wheni— oo s independent of the sliding law exponent formly inclined plane with a mean slope of 3 degrees. The

m. . . ) o . bedrock perturbation is a Gaussian shaped peak situated at
For 6=0, i.e. where basal slipperiness varies in direction (x, y)=(0, 0). The peak has a width of and amplitude
parallel to the flow direction but not across the flow, the situ- ¢ 4 1 /. periodic boundary conditions are used with a peri-
ation is very different from that fof=n /2. FromB4 given odicity of 400/ in bothx andy directions.
in Appendix B we find that in dimensionless units If either the slip ratio is not large compared to unity, or
¢ the horizontal scale of interest is not large compared to mean
= ——— , (42) ice thickness, significant deviations between the SSTREAM
1+ m(1+ 2k2C + ikm cota) and the FS solutions can be expected. In the experiment the
slip ratio does not fulfil the conditiod>1 and it comes as
no surprise that there are some differences between the upper
C (SSTREAM solution) and the lower (FS solution) halves of

,!iﬂ‘o Tye = T+m’ (43) Fig. 13aand b. However, if anything, the performance of the

T'ltC

for [=0. In particular
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Fig. 13a. Surface topography response to a flow over a Gaussian-

shaped bedrock disturbance as given by a FS (lower half of figure) ‘3_030

and a SSTREAM solution (upper half of figure). The mean flow

direction is from left to right. Surface slope is 3 degrees and mean

basal velocity equal to mean deformational velocify=(1). The

spatial unit is one mean ice thickneds.( The Gaussian-shaped

bedrock disturbance has a width of 1@nd it's amplitude is 0.%. The contour lines give horizontal speed and the vectors the hori-

The problem definition is symmetrical about the x axis=0) and ;) velocities. The velocity unit is mean-deformational velocity

any deviations in the figure from this symmetry are due to differ- ; y The glip ratio is equal to one, and the mean surface velocity is

ences in the FS and the SSTREAM solutions. 2ii4. The upper half of the figure is the SSTREAM solution and the
lower half the corresponding FS solution.

Fig. 13b. Response in surface velocity to a Gaussian-shaped
bedrock perturbation. All parameters are equal to those inlBig.

SSTREAM solutions seems surprisingly good. There are, for
example, only fairly small differences seen in the perturbed If the width of the Gaussian peak is decreased front 10
surface topography (Fig.3g. The amplitude of the FS sur-  to, 1 and the slip ratio increased to 100 the differences in the
face topography perturbation (lower half of Fi9 is a bit calculated FS and the SSTREAM surface response become
larger than that of the SSTREAM one (upper half of Big3 more pronounced. The amplitude of the SSTREAM topogra-
but otherwise the surface shapes are in qualitatively terms thehy perturbation is then much larger than that of the FS solu-
same. tion, and in fact quite similar to the shape of the bedrock per-
The FS velocity perturbations are generally larger than thelurbation itself. This aspect of the SSTREAM solution was
those of the SSTREAM approximation (see Higb). Thisis ~ discussed above and is caused by the fact that the SSTREAM
partly due to the simple fact that the mean SSTREAM veloc-Ts» @amplitude is close to unity for small wavelengths (see
ity is equal to 1 while the mean FS velocity is twice as large. &lS0 Fig.6aand b).
One could argue that the mean slip ratio in the SSTREAM
theory should be redefined to give the same mean surface
velocity as the FS solution. In the experiment this would im-4 Summary and conclusions
ply using C=2 when calculating the SSTREAM solutions.
When this is done, the differences between the upper and thAs expected the comparison between the analytical FS and
lower halves in Figl3b become considerably smaller and SSTREAM solutions shows that the SSTREAM approxima-
the overall magnitude more similar. Irrespectively of which tion is highly accurate for long wavelengthis/¢>>1) and
value of C is used, the FS velocity solution has a more de-high slip ratios >>1). The SSTREAM approximation is
tailed short-scale structure. This aspect of the solution can b& these circumstances a much better approximation to the
understood by considering the corresponding transfer funcFS solutions than the SSHEET approximation. However,
tions directly. Comparison of Figia with b, and Fig.8a  somewhat disappointingly, when these conditions are not ful-
with b (despite the parameters used in these figures beinfjlled the SSTREAM approximation is not just inaccurate but
different from Experiment F) also illustrates the fact that the gives rise to some physically unrealistic results. In particu-
FS velocity transfer amplitudes are, for short to intermediatelar, the ratio between surface and bed topography is overes-
wavelengths, generally larger than those of the SSTREAMtimated. Whereas the correct ratio is close to zerofem
theory. the SSTREAM gives a ratio close to unity. The SSHEET
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theory, which also is inaccurate far<h, fails in this respect  presented braymond and Gudmundss¢005 on small-
in a more physically realistic manner by underestimating theamplitude response for non-linear medium in the FS theory,
ratio and giving the correct limit of zero as->0. Arelated and byHindmarsh(2004 on numerical approximations to
somewhat less than satisfying aspect of|thg| SSTREAM  the Stokes equation for both linear and non-linear medium,
transfer amplitudes is the absence of the local maxima in thesuggest that this approach remains useful even when the rhe-
Ts» amplitudes as function of wavelengths seen in the FS soelogy of the medium is non-linear. In particular, in cases
lution. where the analytical solutions reveal significant differences
The physically wrong limit of the SSTREAM;, ampli- between the SSTREAM or the SSHEET approximations as
tude forr—0 is of some concern. It has, among other things,compared to the FS solutions, it is improbable that inclusion
implications for surface-to-bed inversion. Because fhjs  of non-linear rheology will reduce these differences.
transfer amplitude limit is equal to unity, small scale surface
undulations { </) do not get amplified through a direct in-
version and the effects of surface data errors might be underAppendix A
estimated. There is also some danger of the spatial resolving
power of an SSTREAM surface-to-bed inversion to be overShallow-ice-stream scalings
estimated. Further research into these issues is needed before
firm quantitative statements can be made. We consider the case of an ice stream with horizontal length
The 0n|y previous Work dea“ng W|th the effects of Sma”_ Scale[x] and vertical Iength Scalﬁ] where the shallow-ice
amplitude perturbations in boundary data on solutions of2Pproximationz]/[x]=5<1 holds, and write
the SSTREAM theory is the numerical studytéindmarsh v w e
(2004. He calculated, transfer amplitudes and both the (¥+¥»2) = [x](x%. y7, 82%).
t» and ther, timescales for linear and non-linear medium.
The L1L1 apprOX|mat|on used btyilndmarsh(ZQOLD IS an For the mass conservation equatiep; &0) to be invariant
improved version of the SSTREAM theory discussed hereWe scale the velocity as ’
which includes the contribution of internal ice deformation
to the velocity. For high slip ratios the L1L1 approxima- (; v, w) = [u](u*, v*, Sw).
tion is effectively equal to the SSTREAM approximation.
Fig. 5 in Hindmarsh(2004 calculated fornr=3 shows the If we furthermore require the kinematic boundary condition
same general features of transfer the amplitligeand the  at the surface
times scales, andt. for non-linear rheology as found in the
analytical solutions given here valid fai=1 andm>0. In 9§ +udxs +v9ys —w =a,
particular the Ty, |— 1 limit for A— 0 is also found byind-
marsh(2004) for non-linear medium (Fig. 5c). The relative
insensitivity of ther, time scale to wavelengths for high slip
ratios, and the chance in phase speed fignto (m+21)i,, o *
L . . . .a=6lula”,
with increasing wavelength is also seen (Fig. 5a and b in
Hindmarsh 2004. wherea is the accumulation rate. Thus the scale dois
The SSTREAM solutions are much better approximations[a]:5[u]:[w], which seems reasonable as we can expect
to the FS solutions than the SSHEET solutions whenevethe vertical velocity to scale with accumulation rate for small

C>»1 andA/h>>1. For slip ratios typical of active ice syrface slopes. We also find using the same invariant require-

streams the SSHEET solution underestimates the relaxatiopent of the kinematic boundary condition of the surface that
time scale by several order of magnitude. The SSTREAMthe time must be scaled as

solution forz, is, on the other hand, almost equal to the cor-
responding FS solution down to wavelengths of about. 10 7 = o] 2"
The SSTREAM solution gives a finite number forin the
limit A—0 (in dimensional units the limit is o tana/u) As a scale for the stress we use
whereas the same limit for SSHEET theory is zero. Itfollows =~ 1n
that once short wavelengths are present in an SSTREAM?1 =4 (lal/lzD™".
model they do not automatically decay away as they do inWhich is motivated by the expectatiép, ~ a/H and Glen's
an SSHEET model. flow law

Comparing the analytical solutions of the SSTREAM and
the SSHEET approximations with the FS solutions presenteqij = ATYneAem/n g
here and inGudmundssorf2003 provides a quick and an
easy way of assessing the applicability of these two com-where ¢ is the effective strain rate defined through :
monly used approximations to a particular situation. Results:(e'ijéi.,/2)1/2 andt;; are the deviatoric stress components.

where the asterisks denote scaled dimensionless variables.

wheres is the surface to be invariant under the scalings we
must have
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We are considering a situation where the vertical shear com
ponents are small compared to all other stress component
A set of scalings which reflects this situation is

(Oxx, Oyy, Ozz, Oxy, Oxz, Uyz)

_ * * * * *
= [ol(oyy, 03y, 02, 04y, 80,

80;‘2). (A1)

Same scale is used for the pressure, thati$o | p*,

The analysis is done in a coordinate system which is tilted

forward inx direction by the angle. The scaled momentum
equations are

s o) + dyrog, + 00, = =8 T [0] 71, (A2)
ax*U;:y + ay*U;y + BZ*G;Z =0, (A3)
820,07, + 8%0y-0, + dv02, = T[0] 7! cota, (A4)

whereT : =[z]pg sina. We obtain a consistent set of equa-
tions fora=0(8). The slopex is then no longer just an arbi-
trary tilt angel andt can be interpreted as a scale for the basal
shear stress. From the scalingd ] we then havégt]=§[c],
and it follows that the two non-zero terms on the right hand
side of the system of EqsAR) to (A4) are of order unity.
Note that only terms of orde¥ are being dropped from the
momentum equations.

We write the basal sliding law on the form

Up = c(x, Y)ITp" 1T, (A5)

whereT, is the basal stress vector given By=cA— (A7 -
o)A, with A being a unit normal vector to the bed pointing
into the ice, and, is the basal sliding velocity given hy, =
v — (AT - v)A. The functionc(x, y) is referred to as the basal
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erder terms are identically equal to zero. The theory is con-
sequently correct to second ordesin

Only collecting zeroth-order terms followed by vertical in-
tegration over depth and some simple manipulation leads to
the following two coupled differential equations for the hor-
izontal velocity components andv

Ay (4hnd, u+2hndyv)+dy (hn(d,v4+-dyu)) —(u/c) /™

=pghdys cose—pgh Sinc, (A10)
Ay (Ahndyv4+-2hndyu)+0; (hn(dyu4-9,v)) —(v/c) /™
=pghd,S cosa. (A11)

Note that we have now gone back to the dimensional vari-
ables. The quantity; is the effective viscosity defined
throught;;=2n¢;;. For Glen’s flow law the effective strain
rate is given by

& = /@002 + @0)2 + @By + 0,0)2/4+ Do By,

an expression that is correct to second order.

Appendix B

Response of flow to basal slipperiness perturbations

We consider the response to small perturbation in basal slip-
periness. Writingh=h + As, s=5+As, b=b, u=ii+Au,
v=Av, w=Aw, andc=c(1+Ac) whereAc is the fractional
slipperiness, and inserting intd)(and @) gives again the
zeroth-order solutiond). The first-order field equations are

slipperiness. We find that components of the scaled basa) ; .2 02 -2
, hd2. Au + 3nhd2 A o2 Au—yA
stress vectorT(}) are given by " ot U+ Snhdyy AV 4 nhoy, Au—y Au
= pghcoswd, As — pgSina As — yitAc, (B1)
Ty, = 807b* (0, —0y,)—80}b 0 +807,+0(8%),  (AB) o
Ty, = 805b" (0 —0y,)—007b o}, +80,+0(8%), (A7) - . .
Ty = 8205~ t ) OB Pk ok —at )2 (ag) MO AU Snhdy Aut nhd Av =y Av
. ks = pgh As. B2
207, 01b" 05 b 407, 07b 0 0Eb)+ 0 (5%). pgh cosa 9y As (B2)

ThusT;', andT;v are 0 (8) while u; andv; areO(1), hence

clo1™ul™t = 0@B™™). (A9)

Note that sincgt] = 3[o], we can also write Eq.A9)
asc[T]"[u]"18—™ = 0(5~™) from which it follows that
c[t1"[u]~ = 0(1), as expected.

Using é,.=At""lo,. one finds thatd.u=0(s%), or
smaller. Thus, to second order the horizontal velocity com-
ponents: andv are independent af Differentiating the in-
compressibility equatiop; ; = 0 with respect ta it then fol-
lows thaté,, is independent of depth as well and thavaries

linearly with depth. A further consequence is that since the

sliding velocity is of order unity and the deformational ve-
locity ug=0 (8) the slip ratioii; /iig=0(5~2). Note that in
both the field equations and all boundary conditions all first
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Fourier and Laplace transforming these equations and solv-
ing together with Eqs.1@2) and (3), followed by an inverse
Laplace transform gives

kﬁ_
Ty = - pgy (e? — 1), (B3)
_— yii((eP' — 1)(1%tyh cota — ikit) + eP' p p) (B4)
. PE(Y +v) ’
. :klyaﬁ((l—epf)(zd cota—3ikiin) —3e?’ pn) (85)
vc pE(y+v) ’
and
o o
= khuy (eP'(ip + ku) ku)v (86)

pé
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