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Abstract. The rivers of High-mountain Asia provide fresh-
water to around 1.9 billion people. However, precipitation,
the main driver of river flow, is still poorly understood due to
limited in situ measurements in this area. Existing tools to in-
terpolate these measurements or downscale and bias-correct
precipitation models have several limitations. To overcome
these challenges, this paper uses a probabilistic machine
learning approach called multi-fidelity Gaussian processes
(MFGPs) to downscale the fifth ECMWF climate reanalysis
(ERAS). The method is first validated by downscaling ERAS
precipitation data over data-rich Europe and then data-sparse
upper Beas and Sutlej river basins in the Himalayas. We find
that MFGPs are simpler to implement and more applicable
to smaller datasets than other state-of-the-art machine learn-
ing methods. MFGPs are also able to quantify and narrow
the uncertainty associated with the precipitation estimates,
which is especially needed over ungauged areas and can be
used to estimate the likelihood of extreme events that lead
to floods or droughts. Over the upper Beas and Sutlej river
basins, the precipitation estimates from the MFGP model
are similar to or more accurate than available gridded pre-
cipitation products (APHRODITE, TRMM, CRU TS, and
bias-corrected WRF). The MFGP model and APHRODITE
annual mean precipitation estimates generally agree with
each other for this region, with the MFGP model predicting
slightly higher average precipitation and variance. However,
more significant spatial deviations between the MFGP model
and APHRODITE over this region appear during the summer
monsoon. The MFGP model also presents a more effective
resolution, generating more structure at finer spatial scales

than ERAS5 and APHRODITE. MFGP precipitation estimates
for the upper Beas and Sutlej basins between 1980 and 2012
at a 0.0625° resolution (approx. 7km) are jointly published
with this paper.

1 Introduction

High-mountain Asia underpins the water security of around
1.9 billion people, supplying them with fresh water for agri-
culture, energy, industry, and domestic usage via Asia’s
largest rivers (Wester et al., 2019; Immerzeel et al., 2020;
Orr et al., 2022). In this area, precipitation drives river flow
either directly through rain or indirectly by depositing snow
reserves that are eventually released through glacier and
snowmelt (Immerzeel et al., 2020). Precipitation over High-
mountain Asia is mainly influenced by two large-scale atmo-
spheric patterns: the Indian summer monsoon and western
disturbances, which dominate in the boreal winter (Bookha-
gen and Burbank, 2010; Palazzi et al., 2013; Dimri et al.,
2015). On a local scale, precipitation over High-mountain
Asia is characterised by large variances across relatively
small distances of 1 to 10km due to the region’s complex
topography (Anders et al., 2006; Bookhagen and Burbank,
2006, 2010; Karki et al., 2017; Sigdel and Ma, 2017; Orr et
al., 2017; Bannister et al., 2019). However, the spatiotempo-
ral distribution of precipitation in this area is comparatively
poorly understood (Singh et al., 2015; Dahri et al., 2021a;
Orr et al., 2022).
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Knowledge of precipitation patterns in High-mountain
Asia is principally constrained by limited observations. Only
a small number of in situ precipitation observations exist in
this region, with most gauge stations placed in unrepresen-
tative locations (below 2000 ma.s.l.) (Winiger et al., 2005;
Salzmann et al., 2014; Immerzeel et al., 2015; Duan et al.,
2015; Bhardwaj et al., 2017; Krishnan et al., 2019). Indi-
rect observations through satellites are available but strug-
gle to capture the distribution differences between valleys
and ridges as well as short-lived extreme events. Further-
more, satellites often confuse precipitation with ice and snow
at the surface level. This leads to remote sensing products
generally underestimating precipitation in mountainous ar-
eas (Yin et al., 2008; Andermann et al., 2011). These ob-
stacles mean that many physical relationships, such as be-
tween precipitation rates and elevation, are not well under-
stood in High-mountain Asia (Dahri et al., 2016). This in
turn adversely affects tools to interpolate or combine pre-
cipitation measurements to create gridded precipitation prod-
ucts (Meng et al., 2014; Bhardwaj et al., 2017; Hussain et al.,
2017; Ji et al., 2020). As a result, interpolation-based prod-
ucts such as the Asian Precipitation-Highly Resolved Ob-
servational Data Integration Towards Evaluation of water re-
sources (APHRODITE; Yatagai et al., 2012) tend to underes-
timate precipitation at high altitudes (Immerzeel et al., 2015;
Li et al., 2017). Furthermore, such gridded products often
have no uncertainty estimates.

In addition to interpolation-based products, outputs from
regional climate models (RCMs) can also be used to esti-
mate precipitation over High-mountain Asia (Maussion et
al., 2014; Norris et al., 2017, 2019, 2020; Orr et al., 2017).
However, these physical models are computationally expen-
sive, lack error estimates, generate large model-dependent
uncertainty (Hawkins and Sutton, 2009), and are generally
not well-optimised for mountainous regions (Cannon et al.,
2017; Norris et al., 2017, 2019; Orr et al., 2017). For exam-
ple, the ensemble of RCMs from the Coordinated Regional
Climate Downscaling Experiment (CORDEX) for south Asia
regularly overestimates historical precipitation over High-
mountain Asia by over 100 % for both winter and summer
(Sanjay et al., 2017). RCM precipitation outputs therefore
typically need to be bias-corrected before use in this region
(Maussion et al., 2014; Collier and Immerzeel, 2015; Ban-
nister et al., 2019; Potter et al., 2022).

Climate reanalysis products offer an alternative for esti-
mating precipitation by combining outputs from short-range
forecast models with observations through data assimilation.
These products often struggle to accurately represent pre-
cipitation over data-sparse areas or times, including High-
mountain Asia (Dahri et al., 2016; Palazzi et al., 2013). The
fifth ECMWF climate reanalysis (ERAS; Hersbach et al.,
2020), although generally exhibiting a wet bias for High-
mountain Asia, provides relatively accurate precipitation es-
timates in terms of amounts, seasonality, and variability, from
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daily- to multi-annual scale compared to other reanalysis and
RCM products (Chen et al., 2021; Kumar et al., 2021).

Altogether, precipitation products over High-mountain
Asia are often contradictory and lack consensus (Palazzi et
al., 2013; Bannister et al., 2019). These discrepancies further
complicate our understanding and leave room for doubt in
any given prediction or estimate. As precipitation is the main
driver of hydrological models (Meng et al., 2014; Remesan
and Holman, 2015; Wulf et al., 2016), improving precipita-
tion estimates is key to a better representation of the spatial
and temporal dynamics of hydrological processes. These im-
proved estimates can in turn help us better understand, pre-
dict, and mitigate extreme events such as droughts, floods,
and landslides (Ji et al., 2020; Dahri et al., 2021b; Schreiner-
McGraw and Ajami, 2022). Present-day precipitation esti-
mates also underpin the accuracy of future precipitation pre-
dictions (Panday et al., 2015; Sanjay et al., 2017).

Traditional and state-of-the-art statistical downscaling
techniques are used to address these problems but present
their own issues. For High-mountain Asia, downscaling
models often assume simplistic relationships, e.g. a linear
correlation between precipitation and elevation, and focus on
single basins (Dahri et al., 2016; Bannister et al., 2019; Lib-
ertino et al., 2018). New research is making the most of ma-
chine learning tools to downscale precipitation products (Ya-
dav et al., 2024; Gerlitz et al., 2015), allowing researchers
to model more complex spatiotemporal precipitation distri-
butions and generate products over larger areas and longer
time periods (Ahmed et al., 2020; Ning et al., 2016; Mei
et al., 2020; Sun et al., 2022). These studies are also using
machine-learning-corrected precipitation directly as inputs to
hydrological models (Sun et al., 2022; Xiang et al., 2024) and
applying machine learning methods to merge precipitation
data from multiple sources to improve prediction robustness
in ungauged areas (Lyu and Yong, 2024; Xiang et al., 2024,
Zhang et al., 2021).

However, these downscaling methods generally struggle
to simultaneously solve the following problems: (1) captur-
ing extreme values and spatiotemporal structure, (2) gener-
alising to multiple locations, (3) predicting at arbitrary loca-
tions, (4) overcoming gridding biases, and (5) working ef-
fectively with sparse and “small” datasets (King et al., 2013;
Maraun and Widmann, 2017; Bafio-Medina et al., 2020;
Vaughan et al., 2022; Andersson et al., 2023). We propose
multi-fidelity Gaussian processes (MFGPs) as an alternative
to other statistical downscaling and bias-correction meth-
ods. Using MFGPs, precipitation data from multiple sources
can be combined to overcome these challenges and increase
the accuracy and effective resolution of precipitation predic-
tions over topographically complex areas, especially over un-
gauged locations. Most importantly, the probabilistic nature
of MFGPs provides a principled way of quantifying uncer-
tainty and the likelihood of extreme precipitation events.

This study focuses on applying MFGPs to downscale
ERAS monthly precipitation estimates in the data-sparse up-
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Figure 1. Elevation map of the upper Beas and Sutlej river basins with gauge locations represented by white circles. The dashed line
represents the watershed boundaries, with the letter B denoting the upper Beas Basin and S the upper Sutlej Basin. Only three gauge stations
are located above 2000 m. The inset shows the watersheds’ location with respect to High-mountain Asia, with areas above 2000 ma.s.l.

highlighted in purple.

per Beas and Sutlej river basins in the Himalayas. Beas and
Sutlej are two main tributaries of the Indus River. The study
area, shown in Fig. 1, serves as a pilot study for High-
mountain Asia. The paper is structured as follows. Gaussian
processes (GPs) and MFGPs are first introduced in Sect. 2.
The methodology and datasets used are presented in Sect. 3.
The MFGPs are then evaluated by downscaling ERAS5 pre-
cipitation, first over a data-rich region (Europe) and then over
a subset of the upper Beas and Sutlej basins in Sect. 4. The
MFGP framework is then applied to the whole of the up-
per Beas and Sutlej basins and compared with precipitation
dataset benchmarks, including APHRODITE, in Sect. 5. Fi-
nally, the limitations of this approach and further work are
discussed in Sect. 6.

2 Multi-fidelity Gaussian processes
2.1 Gaussian processes

Consider the set of observations x;, y;, with i ={1,..., N},
x; € RP and yi € R, where N is the number of data points
and D the number of observation dimensions. In this paper,
x; represents a vector with the date, coordinates, and ele-
vation of the observation and y; is its monthly precipitation
value. These observations are generated by a function, f:

yi = f(xi) +e, (D

where ¢; is the noise term and is assumed to be distributed
normally with a mean of zero and standard deviation o,,, i.e.
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€ ~ N(0; 0,12). Function f can be modelled with a Gaus-
sian process (GP). We refer the reader to Rasmussen and
Williams (2006) for an introduction to GPs and follow their
notation in this presentation. A GP is a stochastic process
where any finite collection of its random variables is dis-
tributed according to a multivariate normal distribution. Sim-
ilarly to a multivariate normal distribution, a GP is defined
by a mean function, u(x, 8,), and covariance or kernel func-
tion, k(x, x’; 0%):

F(x) ~GP(u(x;0,),k(x, x5 0;)), 2)

where x is the input vector to predict at, x” is another arbi-
trary input location, and @, and 6, represent the hyperparam-
eters of the mean and covariance functions respectively. The
hyperparameters are the parameters of the model that can be
either set manually or optimised. Going forward, the set of
hyperparameters is referred to as #. The covariance function,
k(x,x’;0}), strongly underpins the GP model. It captures the
correlation of the outputs and encodes properties, such as
smoothness and periodicity. If the covariance function is sta-
tionary, the correlation depends only on the distance between
x and x'.

As the output of a GP for a single point is a probability
distribution, the GP output over many points can be inter-
preted as a probability distribution over functions. Predic-
tions at new input locations can therefore be calculated using
Bayes’ theorem. This is also known as the model being “fit”
to the data or “training” the model with the data. If A repre-
sents the GP’s functions and B the data, Bayesian inference
can be written as

Hydrol. Earth Syst. Sci., 28, 4903-4925, 2024
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p AlC p B|A,C

where A= f(-),B= {xi,yi}lNzl,C =0,

where p(A|B, C) is the probability distribution of A condi-
tional on B and C with all other distributions defined analo-
gously. This can be seen as the system A being updated using
new information B. p(A|C) is therefore known as the prior
distribution and p(A|B, C) as the posterior distribution. The
posterior distribution is therefore a principled way to define
the uncertainty of the model and is therefore estimating the
probabilities of extreme values. p(B|A, C) is the probabil-
ity of the observation B occurring given the state of system
A with hyperparameter C and is known as the likelihood.
p(B|C) is known as the marginal likelihood and is the prob-
ability density of the observation given the hyperparameter.
This distribution is calculated by integrating or “marginalis-
ing” over all the values of f, i.e. going from p(B|A, C) to
p(B|C).

GPs are therefore non-parametric. Instead of optimising
over a finite set of parameters, e.g. weights of a random forest
or neural network, GPs are optimised over functions. Conse-
quently, GPs are more expressive in how they fit the data
compared to traditional regression or classification models;
i.e. they can be used to model complex relationships be-
tween the data. GPs are also more robust to overfitting be-
cause rather than optimising a specific function, it integrates
over all potential ones (Rasmussen and Williams, 2006).

Practically, the mean function, w(x;8,); the covariance
function, k(x; x’; @); and the prior distribution are built from
a set of standard functions that encode different assump-
tions. In particular, the covariance matrix is usually designed
by multiplying or adding standard kernel functions together
(Rasmussen and Williams, 2006; Duvenaud et al., 2013). The
covariance function makes GPs well suited for highly cor-
related geophysical datasets and quantifying uncertainty in
absence of data. However these benefits come at a cost, the
computational complexity of GPs scales cubically with the
number of data points. This scaling is an issue in large data
regimes but can be addressed by low-rank approximations
and inducing points (Liu et al., 2020; Tazi et al., 2023).

2.2  Multi-fidelity Gaussian processes

The fidelity of a dataset can be defined as a combination
of the data’s precision and accuracy. The most accurate set
of observations with the highest resolution is referred to
as the high-fidelity data. Less accurate and coarse observa-
tions or simulation data are denoted as low-fidelity data. In
many cases, high-fidelity observations can be expensive to
produce, whereas low-fidelity observations are usually more
inexpensive and therefore more numerous. A multi-fidelity
model combines low-fidelity datasets with the more accurate,
but limited, observations in order to predict the high-fidelity
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output more effectively. Datasets of different fidelities can be
combined using GPs, where the output of a first GP is used as
the input to the next and so forth. For a multi-fidelity Gaus-
sian process (MFGP), each layer of the model represents a
different level of fidelity, starting from the lowest and mov-
ing towards the highest fidelity.

Consider s fidelity levels, each corresponding to different
datasets, e.g. climate reanalysis and gauge station measure-
ments. Each fidelity is made up of a set of observations Y,
at a set of locations X; C RD, where t =1, ...,s. The set of
observations Yy denotes the outputs of the most accurate and
expensive function to evaluate f;, whereas Y is the output
of the cheapest and least accurate function f;. The highest-
fidelity data are assumed to be sampled from the “true” dis-
tribution of the target function. The observation at level ¢ can
be generated by a function f;:

Yt,i = fl(Xt,l')+6t,is “4)

where ¢, ; is the noise term.

One choice for this function is given by Le Gratiet and
Garnier (2014). The approach requires two assumptions.
First, the relationship between the fidelities is assumed to be
linear. Second, the model follows strict hierarchical sampling
rules where the fidelity levels have nested training sets. The
high-fidelity locations must be contained with the domain
of the lower-fidelity. The lowest-fidelity data must therefore
have the largest domain, the second fidelity must have the
second-largest domain and so forth. From these assumptions,
the function f; is defined as

fi(X) = pr fim1(X) + fer(Xy). )

The function f; is the high-fidelity GP as modelled by the
scaled sum of two functions, f;_1 and ferr. Function f;_1 is
a GP modelling the outputs of the lower-fidelity function and
is scaled by py, a scalar indicating the magnitude of the cor-
relation to the high-fidelity data. The function f; is another
GP that models the bias between the two fidelity levels. The
scaling factor, oy, is defined as
cov(fi(X1), fi-1(X1))

X)) = , 6
pr(Xy) var(fo 1 (X)) (6)

where cov is the covariance and var is the variance. Model
inference, including the propagation of the mean and stan-
dard deviation through different fidelity levels, is discussed
in Appendix A. Figure 2 illustrates the MFGP framework for
a pedagogical example using two toy datasets.

3 Method and datasets
3.1 Method overview

In this study, we use the MFGP framework to combine two
datasets of different fidelities: high-fidelity gauge measure-
ments, which are accurate but sparse, and climate reanaly-
sis data, which are complete but more biased. In this way,

https://doi.org/10.5194/hess-28-4903-2024
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Figure 2. One-dimensional pedagogical example of a MFGP model. The low-fidelity dataset is first contrasted with the high-fidelity data
(Step 0). The high-fidelity data are more sparse but have a higher resolution than the low-fidelity data and are also nested within the low-
fidelity input domain. The first GP, fi, is constrained by the lowest-fidelity observation, Y1 (X 1) (Step 1). Function fj is visualised through
its posterior distribution mean (continuous grey line) and its 95 % confidence interval (grey-shaded area) and can be used to make predictions
at new locations. Samples from f] at X, (Step 2) and the observation from the second fidelity, ¥ (X»), are then used as the inputs to the
second GP, f (Step 3). The final panel also shows the output of a simple GP fit to the high-fidelity data only. The simple GP model fails to
capture the underlying high-fidelity function and produces a more poorly constrained posterior distribution.

the MFGP is applied to downscale and bias-correct monthly
reanalysis precipitation data using precipitation gauge mea-
surements. Time, latitude, longitude, and elevation are used
as input variables. The datasets used to train the MFGPs and
make predictions from the model are described in Sect. 3.2.
The MFGP framework is validated using subsets of Euro-
pean station data and then upper Beas and Sutlej gauge data.
MEFGP is first applied to Europe in order to ascertain the per-
formance of the model on an area with less sparse gauge
data and more homogeneous spatial distribution of precipi-
tation before applying it to the more challenging upper Beas
and Sutlej regions. A MFGP model is then trained using all
the gauges in upper Beas and Sutlej basins and compared to
other benchmark datasets. The benchmark datasets, their ad-
vantages, and their limitations are presented in Sect. 3.3.

https://doi.org/10.5194/hess-28-4903-2024

3.2 Training and prediction datasets

The datasets used to train the MFGP model include the
VALUE gauge measurements over Europe (high-fidelity),
the Beas and Sutlej gauge measurements (high-fidelity), and
ERAS (low-fidelity). The digital elevation model is also pre-
sented and is used to make the high-resolution precipitation
estimates over the upper Beas and Sutlej basins.

3.2.1 VALUE gauge measurements

The European station measurements are taken from the
VALUE downscaling experiment (Gutiérrez et al., 2019).
The dataset features daily precipitation at 86 stations across
Europe between 1979 and 2019. These stations are represen-
tative of different climatic regimes over the European con-
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tinent, including mountainous environments. The daily data
are resampled to a monthly temporal resolution.

3.2.2 Beas and Sutlej gauge measurements

The upper Beas and Sutlej basins are chosen as the study
region as they offer comparatively data-rich locations, for
High-mountain Asia (Wulf et al., 2016; Bannister et al.,
2019). The dataset from Bannister et al. (2019) with addi-
tional quality control is used. The dataset is made up of 58
stations with 46 within the upper Beas and Sutlej basins, and
measurements between January 1980 and April 2013. The
23 stations run by the Bhakra Beas Management Board mea-
sure rainfall and snow water equivalent. The remaining 35
stations are run by the India Meteorological Department and
only record rainfall. This is not problematic as all these sta-
tions are below the snow line in this area (Lund et al., 2020).
The precipitation observations are daily but have missing val-
ues, with gaps of several years for most locations. The sta-
tions cover less than half of the study area as seen in Fig. 1.
With station altitudes ranging from 284 to 3639 ma.s.l. and
a median altitude of 935 m a.s.1., most stations are not repre-
sentative of the combined watersheds, which together have a
median elevation of approximately 4700 m a.s.l. The data are
resampled from daily to monthly averages.

3.2.3 ERAS

The fifth ECMWEF reanalysis (ERAS) (Hersbach et al., 2020)
is used to train the low-fidelity GPs of the MFGP model.
ERAS runs from 1950 to the present day over a 0.25°-
by-0.25° grid and assimilates data from a large number of
sources. ERAS’s global spatial coverage and long temporal
range make it an attractive dataset. It is also easily accessible
and straightforward to update. The monthly total precipita-
tion variable is used in the following experiments. Elevation
values are derived from ERAS’s geopotential variable.

3.24 GMTED2010

The 2010 global multi-resolution terrain elevation data
(GMTED2010) is a digital elevation model computed from
11 satellite data sources (Danielson and Gesch, 2011). The
model provides elevation products at three separate resolu-
tions of 30 arcsec (approx. 1km), 15 arcsec (approx. 500 m),
and 7.5 arcsec (approx. 250m) with global land coverage
from 84°N to 56°S for most products. In this paper, a re-
sampled version of GMTED2010 at 0.0625° resolution from
the European Space Agency’s Tropospheric Monitoring In-
strument team is used (TROPOMI, 2019).

3.3 Benchmark datasets

Precipitation estimates using the MFGP framework are
compared against the following precipitation benchmark
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datasets: bias-corrected WRF, APHRODITE, TRMM, and
CRU TS.

3.3.1 Bias-corrected WRF

Version 3.8.1 of the weather research and forecasting (WRF)
model (Skamarock et al., 2008) was used to dynamically
downscale ERA-Interim reanalysis data (Dee et al., 2011) to
a grid spacing of 5 km from 1980 to 2012. The bias-corrected
WREF output is a product that was specifically developed for
the upper Beas and Sutlej basins by Bannister et al. (2019).
The precipitation outputs from the WRF model were bias-
corrected with the in situ observations described above using
the power transformation method proposed by Leander and
Buishand (2007).

3.3.2 APHRODITE

The second benchmark is the Asian Precipitation — Highly
Resolved Observational Data Integration Towards Evalua-
tion of water resources (APHRODITE; Yatagai et al., 2012).
APHRODITE data range from 1951 to 2015 with a max-
imum spatial resolution. The interpolation scheme uses
nearby precipitation gauges, the slope, and a correlation dis-
tance lookup table. In the paper, we use the APHRO_V1101
gridded precipitation product, which was specifically devel-
oped for monsoon Asia. Overall, APHRODITE has one of
the best spatiotemporal coverage of gridded precipitation
products over High-mountain Asia. It is also one of the most
studied and accurate products for the region (Dimri, 2021).
However, the interpolation scheme underestimates precipi-
tation at high altitudes and suffers from spatially heteroge-
neous biases when compared to in situ observations. These
biases pose critical limitations for high-precision hydrologi-
cal studies (Ji et al., 2020; Bhardwaj et al., 2017; Hussain et
al., 2017).

3.3.3 TRMM

The Tropical Rainfall Measuring Mission(TRMM) is a satel-
lite mission that was launched at the end of 1997 and re-
mained active until 2014. TRMM provides good spatial cov-
erage over High-mountain Asia, although several studies
have shown that the relatively coarse resolution of its prod-
ucts is unable to capture distribution differences between val-
leys and ridges (Shukla et al., 2019; Andermann et al., 2011;
Yin et al., 2008). Additionally, its relatively poor temporal
coverage (only a few overpasses per day) also contributes
to extreme precipitation events not being captured. Here we
use TRMM_3B43 data, which is a monthly 0.25° resolu-
tion Level 3 precipitation product where radar and radiome-
ter measurements have been converted to precipitation values
and the results have been calibrated against ground measure-
ments (Japan Aerospace Exploration Agency, 2018). How-
ever, the calibration sites are not in High-mountain Asia.

https://doi.org/10.5194/hess-28-4903-2024



K. Tazi et al.: Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes

334 CRUTS

The final benchmark is the high-resolution Climatic Re-
search Unit global climate Time Series dataset (CRU TS
v4.05; Harris et al., 2020). This gridded dataset uses an an-
gular distance weighting interpolation of in situ observations
between 1901 and 2020. This resulting product has a 0.5°
resolution and was chosen as a baseline given its coarser res-
olution and global scope.

4 Model validation
4.1 Experimental setup
4.1.1 Validation scheme

The MFGP model is evaluated from 2000 and 2004 over both
Europe and the upper Beas and Sutlej basins. This time pe-
riod represents the time with the largest number of active sta-
tions in the upper Beas and Sutlej basins. For both regions,
the MFGP model is tested using fivefold cross-validation.
This means the data are first separated into five groups or
folds and five separate models are trained on different permu-
tations of four groups and tested on the fifth. Cross-validation
is therefore a useful way to estimate how the model will per-
form in practice when it is asked to predict at arbitrary lo-
cations far way from its training distribution. The groups are
determined via k-means clustering on the station locations.
To make the cross-validation clusters even in size, only the
seven stations closest to the cluster centres are kept. The clus-
ter downsizing also increases the spatial independence be-
tween folds. The folds for both regions are shown in Fig. 3.

Different variants of this cross-validation method are used
to evaluate the MFGP model. First, we set up a data-rich
experiment over Europe. In this case, all the available sta-
tions except the test fold stations are used to train the model.
For example, when evaluating the model on Fold 1 (Fig. 3a,
blue markers), the model is trained on the other folds and the
grey stations. In this setting, the model therefore has access
to more data, including data that are climatically similar to
where the model is evaluated. We then modify the experi-
ment to create a data-sparse setting over Europe. In this case,
we train only the data in the training folds and test on the
excluded group. The data-sparse scheme is repeated for the
evaluation over the upper Beas and Sutlej basins. This pro-
gressive reduction in data should help compare the impact of
the data sparsity on the MFGP model against that of complex
spatiotemporal precipitation distribution in the upper Beas
and Sutlej basins.

4.1.2 Data transformation

The probability distribution function of monthly precipita-
tion is not Gaussian but usually follows a log-normal dis-
tribution. However, as the GP posterior distribution is con-
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strained to be normal, making the marginal distribution more
normal can therefore help with inference. For this reason, the
precipitation data are transformed using a Box—Cox function,
8., fit to the low-fidelity ERAS data:

A
Yi if 250,

if A =0,

Vi=g.0i) = @)

log y;

where y; is the ith observation and is assumed to be pos-
itive, y; the transformed value, and A is the scaling factor.
The input features are standardised by subtracting the mean
and dividing standard deviation of the training set before they
are passed to the models. This is also known as z scoring and
generally improves inference.

4.1.3 Kernel design

The MFGP kernels are specified to be Matérn % functions

defined as
N NG NG
o % v
Fentar(x, %) = W(T'x —x/|> Ky (T . ()
where v = %, o? is the variance parameter, [ is the length

scale parameter, I is the gamma function, and K, is the mod-
ified Bessel function of the second kind. The Matérn % func-
tion provides samples that are more faithful to real physical
processes compared to the default squared exponential ker-
nel. The samples are twice differentiable, i.e. not completely
smooth, thus allowing for more abrupt changes in the mod-
elled variable. The Matérn % kernel performed better than the
squared exponential kernel for both Europe and upper Beas
and Sutlej basin experiments (not shown).

4.1.4 Machine learning baselines

The performance of the MFGP is compared to several base-
line models. We would like to establish that using both low-
and high-fidelity data is an improvement over models that
use just one or the other. In order to do this, we implement a
GP fit to ERAS data using a Matérn % kernel and a GP fit to
the station data using a Matérn % kernel. The GP fit to ERAS
using a Matérn % is equivalent to the MFGP low-fidelity out-
put. Finally, the MFGP is also compared to a GP fit on the
station data with the custom kernel design. The custom ker-
nel is defined as

k = kpats2 (time) - kper(time) ©)

+ kmats2-ARD (latitude, longitude, elevation),
where kpats2 1S the Matérn % kernel, kpe; is the periodic ker-

nel, and kmats52-ARD 1S the Matérn % exponential kernel with
automatic relevance determination (ARD) (MacKay, 1994).
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Figure 3. Maps of cross-validation folds over (a) Europe and (b) the upper Beas and Sutlej basins. The round marker represent the stations,
the marker colours the different folds, and the stars the cluster centres found via k-means. The coastlines are plotted in black in (a) and the
upper Beas and Sutlej basins watershed boundaries in light grey in (b).

ARD allows the kernel parameters to vary between input di-
mensions. The periodic kernel is defined as

(10)

2sin(2 —
kper<x,x/>=02exp<_ sin( ”';‘2 x|/p)>’

where p is the period parameter, o> the variance parameter,
and / the length scale parameter'. A similar kernel design to
Eq. (9) was used over the upper Indus Basin with ERAS pre-
cipitation by Lalchand et al. (2022) and was found to perform
as well as more complex non-stationary kernel functions. The
kernel design was formulated following the framework pro-
posed Tazi et al. (2023), where statistical analysis of the pre-
cipitation data and domain knowledge, such as the periodic
temporal patterns and the strong influence of elevation, were
combined to create a kernel that is predictive without being
unnecessarily complex.

Additionally, the MFGP model is compared to other mod-
els commonly used to interpolate or downscale precipita-
tion for small datasets. We implement three non-probabilistic
models, including linear interpolation, random forest, and
support vector regression downscaling, where ERAS precip-
itation is directly used as a high-fidelity precipitation pre-
dictor. We also compare the MFGP with a strong alternative
probabilistic model — namely, a convolutional conditional
neural process (ConvCNP). Although these models contex-
tualise the MFGP performance, they do not contribute to-
wards the main goal of demonstrating how the uncertainty
can be narrowed by incorporating multiple data sources. For
this reason, these models are discussed in Sect. 6.

1Although o2 and I serve similar purposes to the parameters
of the Matérn % kernel shown in Eq. (8), they are actually distinct
variables and optimised separately.
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4.1.5 Performance metrics

Several metrics are used to evaluate the models. The root
mean square error (RMSE) is calculated for the validation
sets as well as their Sth-percentile and 95th-percentile values
to evaluate how well the model is capturing extremes. The
RMSE is more robust to outliers than the mean absolute error
or the bias. We also calculate the coefficient of determination
(R?) to understand how much of the variance in the data is
represented by the model. These metrics are chosen in part
for their broad usage across both machine learning and envi-
ronmental science fields. The mean log loss (MLL) computes
the average negative logarithm of the posterior likelihood of
all validation points. This metric is a measure of the model
confidence and the quality of its uncertainty predictions. The
MLL is more suited to probabilistic methods than RMSE or
R?. All the metrics are defined in Appendix B.

4.2 Validation over Europe

The MFGP framework is first applied to a data-rich set-
ting over Europe. Table 1 shows the performance of the
MFGP with respect to other simpler GP models. Of these
methods, the GP with the custom kernel extrapolating
only from gauges yields the poorest results, with a nega-
tive R? indicating that the model is predicting worse than
the precipitation mean. This poor predictive skill is ex-
pected as the custom kernel is designed to model precip-
itation over the western Himalayas and not Europe. By
contrast, precipitation estimates from the GPs with the
Matérn kernels provide better results. In particular, apply-
ing a GP fit to ERAS data at every station location gives
even better estimates compared to a GP fit to the station
data, including the best estimates for 95th-percentile RMSE
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(2.58 £1.11 mmd~"). However, the MFGP model gives the
best overall results with the lowest mean and Sth-percentile
RMSE (1.06 +0.42mmd~! and 0.51 £0.20 mmd~" respec-
tively), the highest R? (0.65 4 0.09 mmd~!), and the lowest
MLL (0.89 £ 0.20).

The experiment is then repeated for the data-sparse setting.
Table 2 shows the performance metrics for this setup. Despite
a small decrease in performance compared to the data-rich
experiment shown in Table 1, the MFGP model is still able to
combine the two datasets to improve predictions. The other
baselines also show a generalised decreases in skill, but their
ranking is unaffected.

Figure 4a plots the high-fidelity output as a function of
low-fidelity R? for the validation locations. The high-fidelity
output corresponds to the MFGP fit using both ERAS and
gauge data. The low-fidelity MFGP fit uses ERAS only and
is equivalent to fitting a simple GP to ERAS as shown in Ta-
ble 2. Values above the dashed line show the locations where
combining the datasets leads to improved performance. The
plot shows that the MFGP improves predictions at most sta-
tion locations. The largest gains are observed over the Eu-
ropean Alps (shown in orange). Simultaneously, this is also
the area, along with the Pyrenees and northern Spain (shown
in green), where the model produces the largest errors. Al-
together, these results show that MFGPs can confidently be
applied to more data-sparse locations.

4.3 Validation over upper Beas and Sutlej basins

Table 3 shows the performance of the MFGP with respect
to other simpler GP models for the upper Beas and Sutlej
basins. Overall, the performance of the MFGP model and
machine learning baselines is worse than over Europe, with
all metrics showing a decrease in skill. This can be explained
in two ways. First, ERAS is more accurate over Europe than
the upper Beas and Sutlej basins (cf. Tables 2 and 3). Sec-
ond, the precipitation in High-mountain Asia presents more
extreme seasonal variations, so it is harder to predict (see Ap-
pendix C). The higher spatial heterogeneity of the precipita-
tion over the upper Beas and Sutlej basins should not strongly
contribute to the performance difference as the standardised
spatial length scales between the European and Himalayan
stations are similar (see Appendix C).

The MFGP’s MLL and RMSE metrics suffer the most
compared to the European experiments and the GP baselines.
The MFGP’s RMSE values grow approximately by a factor
of 3 and the MLL by a factor of 2. This behaviour could be
caused by the specific temporal distribution of precipitation
in the upper Beas and Sutlej. For most of the year, precip-
itation values stay low but increase dramatically during the
Indian summer monsoon, peaking in June/July. If the model
does not predict these extreme values, the MLL and RMSE
are heavily penalised. Conversely, the stronger periodicity
in the data makes it easier to fit the GP models, thus com-
paratively improving the GP MLL scores and 5th-percentile
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RMSE. The MFGHP still outperforms the GP fit to ERAS and
the GP extrapolating from the station data only with a mean
RMSE (3.00+0.92mmd™") and R? (0.46£0.11). In this
experiment, the GP with the custom kernel outperforms the
GP with the Matérn kernel, suggesting that incorporating do-
main knowledge becomes more important in this more com-
plex precipitation regime. The experiments were also con-
ducted with all the ERAS data for the study area (not shown)
but showed no significant improvement over using the ERAS
data at the station locations only.

Figure 4b plots the high-fidelity R? as a function of low-
fidelity R? for the validation locations across the basins.
The figure shows that when the low-fidelity R? is already
high (> 0.5), the MFGP improvements are limited. However,
when the low-fidelity R? is low, the MFGP significantly im-
proves the low-fidelity fit. The upper Beas and Sutlej low-
fidelity R? values also cover a much larger range. Although
the MFGP improves the low-fidelity predictions less consis-
tently than over Europe, it makes larger improvements over
ERAS over the upper Beas and Sutlej basins. In particular,
the largest improvements are observed for Fold 4 (shown in
red), which has the highest average elevation and is therefore
most representative of the basins’ ungauged areas. This re-
sult is therefore encouraging given the paper’s objective to
predict in high-altitude ungauged locations.

5 Application to upper Beas and Sutlej basins
5.1 Study area predictions

A MFGP model is now trained using all available station
data, including the stations outside of the basins, and ERAS
data over the study area (30-33.5°N, 75.5-83°E) between
2000 and 2009. This corresponds to the overlapping period
between all the benchmark datasets studied in the follow-
ing section. Again, the precipitation values are transformed,
and input features are z-scored before they are passed to the
model as this improves model inference. Separate models are
trained on a yearly basis due to memory and computational
constraints. In Appendix D, we show that, assuming no miss-
ing data, this does not significantly impact the results of the
model performance. When training the model across the en-
tirety of both basins, the MFGP high-fidelity GP initially op-
timised the longitude length scale to a very small value. This
produced nonphysical-looking results with striations along
lines of same longitude. Therefore, Gaussian prior distribu-
tions of A(0.1°,0.01°) are set for the longitude and lati-
tude length scale parameters such that they would optimise
to similar values. This choice is motivated by the expectation
that the precipitation length scales should be similar along
these dimensions. The prior parameter values are selected
based on the optimised hyperparameters for the MFGP’s
low-fidelity GP and the high-fidelity hyperparameters from
the MFGP validation experiment. Finally, the GMTED2010
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Table 1. Model performance metrics for the data-rich setup over Europe. The models include the MFGP, a GP using the custom kernel,
and a GP using a Matérn % kernel with ARD. The metrics include the average RMSE (RMSE), the Sth-percentile RMSE (RMSES), the
95th-percentile RMSE (RMSE9S), the R2, and the MLL. The training features represent inputs used to train the models. The errors represent
the standard deviation across the validation folds. Bolded values show the best model performance for a given metric.

Model Training features RMSE [mmd~!] RMSE5 [mmd~'] RMSE95 [mmd~!] R? MLL
MFGP Gauges + ERAS 1.06 £ 0.42 0.51+0.20 2.72+1.54 0.65 +0.09 0.89 +0.20
GPpats2 ERAS 1.16+0.43 0.52+0.25 2.58+1.11 0.574+0.13  (1.87+0.71) x 107
GPcustom  Gauges 1.91+£0.69 1.60+0.22 5.58 +£2.06 —0.144+0.23 1.57£0.19
GPyats2  Gauges 1.21+£045 0.59+0.29 285+1.17 0.55+0.14 1.94+0.36
Table 2. As Table 1 but for the data-sparse setup over Europe.
Model Training features RMSE [mm d_l] RMSES [mm d_l] RMSE95 [mm d_l] R? MLL
MFGP Gauges + ERAS 1.13+0.47 0.57+£0.23 3.02+1.62 0.62+0.11 0.90 +0.20
GPMmats2 ERAS 1.21£0.46 0.59£0.29 2.84+1.17 0.55+0.14 (1.87£0.74) x 107
GPcustom  Gauges 2.25+0.90 1.10£0.60 6.51£2.29 —0.57+0.46 1.73£0.33
GPpats2  Gauges 2.13£091 1.21+0.48 6.29£2.35 —0.39£0.44 1.624+0.31

dataset was used (Danielson and Gesch, 2011) for the pre-
diction locations and elevations. The dataset’s 0.0625° reso-
lution (approx. 7km) allows the MFGP model to predict at
high-enough resolution to enable municipal decision-making
(Mikaela Rambali, personal communication, 2020).

The average annual and seasonal precipitation MFGP pre-
dictions are shown in Fig. 5. The mean of the MFGP pos-
terior distribution is compared to ERAS precipitation in the
first two rows. The MFGP annual average shows that most
of the precipitation is concentrated in the west half of the
study area over the Himalayan foothills. During the mon-
soon season, the MFGP shows an average rainfall reaching
10mmd~!. The monsoon also brings rain to the southeast-
ern side of the upper Sutlej Basin. Although aestival precip-
itation distributions are similar, the highest precipitation val-
ues of the MFGP model are shifted west relative to ERAS.
In the winter months, the variance in precipitation is more
attenuated, and the distribution centre is shifted to the north-
east and thus towards higher elevations. In contrast with the
upper Beas Basin, precipitation over the eastern upper Sutlej
Basin increases with altitude, with valleys showing overall
little rain or snowfall (< 2 mmd ") across all seasons. These
findings qualitatively echo previous studies on the spatiotem-
poral distribution of precipitation in this area, including the
non-stationary and complex pattern of orographic precipita-
tion gradients (Dabhri et al., 2016; Bannister et al., 2019).

The 95 % confidence interval (CI) of the MFGP model
is also plotted in Fig. 5. This metric represents the inter-
val in which 95 % of the MFGP outputs fall into. The CI
boundary values therefore show possible extreme precipita-
tion values. The CI is therefore used as a measure of un-
certainty. The most salient characteristic of the CI is that it
is large in comparison to the mean of the posterior distribu-
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tion at over 45mmd~! for several locations. For both mon-
soon and winter seasons, the CI is largest in the area around
32°N, 77°E at the western edge of the study area. This be-
haviour is linked to conflicting low- and high-fidelity predic-
tions, where ERAS suggests high precipitation values, while
the high-fidelity gauge data suggest the precipitation should
be much smaller at the same location. Conversely, over un-
gauged areas, the CI remains low. This shows the improved
predictive power of combining reanalysis and gauge data in
a probabilistic framework.

The mean posterior distribution and CI are then combined
in a bivariate chloropleth map in the bottom row of Fig. 5.
In general, the CI is expected to increase with higher pre-
cipitation values. This plot allows us to identify the regions
that have the highest uncertainty output compared to their
mean predictions, i.e. a high relative uncertainty. The east
and higher-altitude ungauged locations generally have a high
relative uncertainty, and areas with a high gauge density have
a lower relative uncertainty. However, the chloropleth map
does exhibit some smaller unexpected features. For exam-
ple, a high-relative-uncertainty area in the west of the upper
Beas Basin (32° N, 76° E) and low relative uncertainty in the
southern borders of the upper Sutlej Basin that receives more
precipitation during the monsoon and winter seasons. Again,
this points to the MFGP model successfully capitalising on
information from both precipitation datasets.

The effective resolution of the MFGP model is also com-
pared with that of ERAS. Effective resolution refers to the
level of detail that can be accurately represented by the
model. The effective resolution can be determined through
the data’s power spectrum. A power spectrum shows the
amount of the structure present in the dataset for a given
wavenumber, k, or resolution, k~!. When the spectral den-
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Figure 4. MFGP high-fidelity R? as a function low-fidelity R? over (a) data-sparse Europe and (b) upper Beas and Sutlej basins. The colours
correspond to the folds shown in Fig. 3. Values above the dashed line show an improvement over the low-fidelity MFGP fit. The plots shows
that as the low-fidelity R? decreases, the high-fidelity R? stays relatively high. This illustrates that important gains can be made over using

ERADS alone.

Table 3. As Table 2 but for the upper Beas and Sutlej basins.

Model Training features RMSE [mmd~!] RMSE5 [mmd~!'] RMSE95 [mmd~!] R? MLL
MFGP Gauges + ERA5 3.00+0.92 1.66 4 0.95 9.62+3.63 0.46+0.11 1.79+£0.22
GPpas2  ERAS 3.32+£0.79 239+1.52 7.56+2.81 026+0.32 (1.14£0.48) x 108
GPeustom  Gauges 3.16 + 1.00 0.99 +0.76 10.46 £4.33  0.40=+0.11 1.67 +0.31
GPpas2  Gauges 3244135 0.86 + 0.56 11.0+5.11  0.38+£0.25 1.66 +0.32

sity is low, it is not contributing structure at that resolu-
tion and therefore not representing the physical processes at
that scale. To generate the power spectrum, a Fourier trans-
form of the precipitation is calculated for each month over
a square area (31-33°N, 77-79°E). To proceed equitably,
the ERAS data are linearly interpolated along their spatial
coordinates to the same resolution as the MFGP, and both
datasets are z-scored. Figure 6 shows the spectral density, P,
falls off as a function of the resolution for both ERAS and
MEFEGP. Although ERAS has a native resolution of 0.25° (ap-
prox. 31 km), it possesses a relatively small amount of struc-
ture compared to the MFGP the same resolution. The MFGP
model continues to generate more structure at finer scales
too. This points to the MFGP representing spatial patterns of
precipitation better than ERAS.

5.2 Comparison with benchmark datasets

To further evaluate the performance of the MFGP model over
the upper Beas and Sutlej basins, the benchmark datasets
described in Sect. 3.3 are now compared to the in situ ob-
servations between 2000 and 2009. All the available station
data in the upper Beas and Sutlej basins (46 of 58 avail-
able stations) are used. Nearest-neighbour precipitation val-
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ues to the station locations are reported. It is important to
note that bias-corrected WRF has used these gauge measure-
ments in its development. This is also most likely the case
for APHRODITE and CRU TS. Table 4 compares the per-
formance of the products across the different metrics. As the
MFGP model is trained on all these data points, we do not in-
clude the model’s performance here as to make an equitable
comparison.

APHRODITE outperforms the other products for the
mean RMSE (2.36 +0.86 mmd 1), Sth-percentile RMSE
(0.56 £0.61mmd™"), and R? (0.43 £ 1.01) metrics. ERAS
has the best 95th-percentile RMSE (6.17 &3.54 mmd~1)
but the poorest Sth-percentile RMSE (0.84 +0.79 mmd~!).
For this area, TRMM simultaneously yields the worst mean
RMSE (3.99+1.43mmd~!) and 95th-percentile RMSE
(8.544+4.02mmd™"). The results for ERA5 and TRMM
match previous findings, exhibiting wet and dry biases re-
spectively (Kumar et al., 2021; Chen et al., 2021; Ander-
mann et al.,, 2011; Shukla et al., 2019; Yin et al., 2008).
The bias-corrected WRF product has the worst R perfor-
mance (—0.31 2.80). Overall, the table shows that the per-
formance of these models is highly heterogeneous across

Hydrol. Earth Syst. Sci., 28, 4903-4925, 2024
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Figure 5. Spatial distribution of average precipitation between 2000 and 2009 over the upper Beas and Sutlej basins for ERAS (top row), the
MFGP posterior mean (second row), the MFGP 95 % confidence interval (third row), and bivariate choropleth map of the MFGP posterior
mean and 95 % confidence interval (bottom row). Here, the 95 % confidence interval is used as the measure of uncertainty. Results are shown
for annual (first column), summer (JJAS; second column), and winter (DJFM; third column) periods.

Table 4. RMSE and R? for benchmark datasets over upper Beas and Sutlej basins between 2000 and 2010. Only stations located in the basins
(46 out 58) are used to evaluate the datasets. The errors represent the standard deviation across the stations. As some of these benchmarks are
or are likely produced using the station data, it is not possible to compare these results with the previous table. Bolded values show the best
model performance for a given metric. * ERA5 uses only remote sensing data for precipitation measurements but is also constrained using
direct measurements for other climatic variables.

Input features ~ RMSE [mmd~!] RMSE5 [mmd—!] RMSE95 [mmd~!] R?
ERAS5 Multiple* 2.83+0.89 0.84+0.79 6.17 £3.54 —0.11+£1.98
APHRODITE Gauges 2.36 +£0.86 0.56 +0.61 6.45 +3.46 0.43 +£1.01
TRMM Remote sensing 3.9941.43 0.83+£0.76 8.54+4.02 —0.18 £0.51
CRU TS Gauges 276 £1.09 0.62 +0.39 7.63+£4.23 0.25+1.15
Bias-corrected WRF ~ Gauges + WRF 3.13+0.94 0.73+£0.92 7.02+3.34 —0.3142.80

both basins, with all metrics showing large standard devia- APHRODITE and the MFGP output are therefore compared.

tions. The average precipitation across the basins for the MFGP

From Table 4, APHRODITE was determined to be the output and APHRODITE between 2000 and 2009 do not dif-
most accurate of the benchmarks presented in the paper fer much, with a mean and standard deviation of 1.73 and
for this region and time period. The differences between 2.37mmd ™" respectively for the MFGP model compared
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Figure 6. MFGP, ERAS, and APHRODITE power spectra over a
2°-by-2° area (31-33° N, 77-79° E) between 2000 and 2009. ERAS
and APHRODITE data are linearly interpolated to the same reso-
lution as the MFGP output. The y axis shows the power spectral
density as a function of resolution, i.e. the inverse of the wavenum-
ber k. The continuous lines show the average spectral densities and
the shaded areas represent their standard deviation over time. All
three datasets are z-scored prior to analysis.

to 1.61 and 2.33mmd~! for APHRODITE. Figure 7 maps
out the annual and seasonal averages. The annual average
shows local spatial differences on the order of +2.5mmd~".
However, seasonal averages show much larger differences
between the two datasets. In particular, APHRODITE pre-
dicts lower precipitation values in the northwest corner of
the upper Beas Basin (—5 to —8mmd~') and higher val-
ues on southeast side of the upper Beas Basin (42.5 to
+5mmd~!) during the summer monsoon. These differences
are large compared to the values shown in Fig. 5. This is also
where MFGP places the most uncertainty in Fig. 5. These
results, in combination with the spatial differences between
the MFGP and ERAS, point to an ambiguous spatial rep-
resentation of peak precipitation values in the Himalayan
foothills during the monsoon. In the winter, the differences
are smaller due to, on average, lower precipitation rates (be-
tween +5 and —1.5mmd ™). During this period, the MFGP
model predicts lower precipitation estimates at higher alti-
tudes compared to APHRODITE. Finally, the power spec-
trum for APHRODITE is calculated in Fig. 6. The dataset
presents a smaller average effective resolution compared to
the MFGP and even ERAS.

6 Discussion and further work
6.1 MFGP extensions

The MFGP model is easily applicable to other watersheds
and mountainous regions, such as the Andes or European
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Alps, or to downscale other reanalysis or climate models.
The model resolution is also arbitrary and higher-resolution
results could be generated using a higher-resolution digital
elevation model when predicting at new times and locations.
This flexibility makes MFGP a powerful tool for hydrologi-
cal and, more generally, geophysical modelling.

In this paper, a linear setup was applied. However, it is
possible to apply the nonlinear form of the model, known as
the nonlinear autoregressive GP (NARGP) (Perdikaris et al.,
2017):

(X)) =g (X4, fics1(X))), (11)

where

8t~ GP(f, (X110, ktg ((Xt’ Ji—1(X0), (X;, Ji—1 (X;)) ; okt))

Unlike linear MFGP, NARGP captures nonlinear relation-
ships between the different fidelities. However, the autore-
gressive architecture of the model is also one of its limita-
tions. The model specifies each GP is fitted in an isolated hi-
erarchical manner. This type of inference means the model’s
complexity is not controlled through Bayesian inference and
makes it more susceptible to overfitting. This was found to be
true for the precipitation datasets presented in this paper. An
alternative could be to implement a multi-fidelity deep Gaus-
sian process (MFDGP) proposed by Cutajar et al. (2019),
where the evaluation at each fidelity level is performed us-
ing data from the current and previous fidelity levels. How-
ever, the MFDGP method requires the use of inducing points,
which can be hard to initialise without strong machine learn-
ing and environmental domain knowledge.

6.2 MFGP validation
6.2.1 With respect to GPs

In the validation experiments, we use datasets with no or a
small number of missing values to compare the performance
of the model with other methodological benchmarks. In this
case, we are only evaluating how well the model extrapolates
in space. This works in favour of the simple GP model that
extrapolates from the high-fidelity gauge data. However, the
simple GP’s accuracy suffers significantly when extrapolat-
ing with respect to time, which is required when making pre-
dictions for incomplete datasets. This behaviour is another
advantage of using a multi-fidelity model. The model valida-
tion in this study also highlights the impact of the observation
scarcity to model accuracy. Tackling the impact of climate
change on water scarcity in High-mountain Asia therefore
requires more data sharing initiatives and consistent invest-
ment in weather station maintenance and deployment.

6.2.2 With respect to benchmarks

The benchmark datasets are compared on the validation folds
in Appendix C. In this experiment, the MFGP model is able
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Figure 7. APHRODITE-MFGP differences between 2000 and 2009 over the upper Beas and Sutlej basins. Columns represent outputs for

annual, monsoon (JJAS), and winter (DJFM) averages respectively.

to outperform the other models on some metrics over the data
held out from the model (see Sect. 4.3). In particular, the
model still scores the best for RZ (MFGP R? =0.46+0.11
vs. average of R? = 0.00) despite most of these datasets be-
ing produced using these in situ observations. This shows
that the underlying variations in data are being more accu-
rately captured by the MFGP model even if the amplitude
of those variations are captured less precisely (higher RMSE
scores). This lower precision makes sense as we expect the
model to widen its posterior distribution at locations far from
its training distribution. Furthermore, the MFGP product,
unlike previous ones, includes principled uncertainty esti-
mates in the form of probability distributions. This can al-
low policymakers to understand the likelihood of worst-case
scenarios of drought or flooding. These uncertainty distri-
butions can also be directly used to inform the placement
of future sensors through multi-objective Bayesian optimi-
sation (Daulton et al., 2021, 2020). The MFGP model out-
puts could, for example, be combined with the distance from
roads and trails as a proxy for accessibility. Once together,
station locations that are both predictive and practical could
be found. Finally, the model can be easily updated with
new station data through online learning, a feature which is
unique to Bayesian inference (Bui et al., 2017; Lederer et al.,
2021).

6.2.3 With respect to other machine learning models

The performance of the MFGP model is also contextualised
through the implementation of three non-probabilistic base-
line models and a probabilistic deep learning model. Re-
sults and model implementation details are presented in Ap-
pendix E.

The performance of the linear interpolation model is first
assessed. We note that the model presented in this paper is
similar to the interpolation scheme used for precipitation in
ERAS-Land (Muifioz-Sabater et al., 2021). ERAS5-Land is a
reanalysis dataset that provides a consistent view of the evo-
lution of land variables at an enhanced spatial resolution of
9km. This is produced by running a land surface model to
regenerate some of the land components of ERAS climate re-
analysis. For atmospheric forcing, it uses ERAS atmospheric
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variables, including precipitation, which are linearly interpo-
lated to the ERAS-Land grid. The linear interpolation model
also includes elevation as a predictor, which should allow it
to perform better than ERA5-Land, especially over moun-
tainous regions.

Overall, linear interpolation performs significantly worse
over both Europe and Beas and Sutlej basins than the MFGP,
and even its probabilistic counterpart, the GP fit to ERAS.
This can be attributed to the GP’s generation of nonlinear
functions that better capture ERAS’s physics and data assim-
ilation.

We then contrast the MFGP to random forest and support
vector regression. Both random forests (Ho, 1995) and sup-
port vector regression (Drucker et al., 1996) have been used
extensively to downscale precipitation, including over High-
mountain Asia (Sun et al., 2022; Xiang et al., 2024; Ahmed
et al., 2020; Yan et al., 2022; Ning et al., 2016; Mei et al.,
2020). Both methods work well with small datasets; are non-
linear; and, for support vector regression, are kernel-based
like GPs.

The random forest and support vector regression models
perform similarly to the MFGPs in terms of RMSE/R? for the
data-rich Europe experiment. However the MFGP performs
consistently better for these metrics and is less sensitive to
the reduction of data when moving to the data-sparse setup.
Over Europe, random forests are, however, better at repre-
senting extreme values across all the cross-validation folds.
Over the Beas and Sutlej basins, the MFGP dominates, of-
fering more better and more consistent results, with the ex-
ception of the Sth-percentile RMSE. The relatively poor per-
formance for the low-percentile values is due to the GP and
MFGP models reverting to the observation mean in locations
far from the training distribution where they are uncertain
rather than confidently predicting lower values like the non-
probabilistic models.

Lastly, ConvCNPs are also implemented for the validation
experiments. The ConvCNP model is one member of the neu-
ral process model family that has shown state-of-the-art per-
formance in spatiotemporal downscaling tasks (Vaughan et
al., 2022; Gordon et al., 2019; Andersson et al., 2023). Neu-
ral processes offer similar advantages to the MFGP in terms
of being able to quantify the probability of extreme events,
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generalise to multiple locations, predict at arbitrary loca-
tions, and overcome gridding biases. The results show that
these models overfit these relatively small datasets, perform-
ing worse than linear regression in particular for the Beas and
Sutlej experiment. This is not surprising as neural networks
generally require a large number of data points to be trained
adequately. As these models can be used for transfer learn-
ing, future work could investigate the using data from other
mountainous regions to inform predictions in data-sparse
High-mountain Asia. In summary, the MFGPs are best suited
to downscaling in the sparse and out-of-distribution settings
presented in this paper.

6.3 Applicability of results

The MFGP model output for the 33-year period between
1980 and 2012 over the upper Beas and Sutlej basins is
made available for scientists, hydrologists, and policymakers
to perform more thorough research and water security risk
assessments (Tazi, 2023). However, there are several limita-
tions to its applicability. A key shortcoming to the results, as
with many precipitation product in mountainous areas, is the
underestimation of precipitation estimates due to undercatch.
This is especially true in exposed areas and where precipi-
tation falls as snow. Implementing the model for a year at a
time is also problematic. This means the model, at times with
fewer observations, cannot leverage the mappings that ex-
ist at other times. Furthermore, predictions have been made
for a monthly resolution only and are inappropriate for hy-
drological models that usually operate on a daily timescale.
These constraints come from the computational complexity
of the MFGP. The framework could also be applied across
High-mountain Asia, but this would also be computationally
expensive. These problems could be overcome by applying
variational, product-of-experts, or low-rank approximations
to the MFGP model (Tresp, 2000; Titsias, 2009; Wilson and
Nickisch, 2015).

7 Conclusions

MEFGPs are simpler and more accurate than recent state-of-
the-art models and traditional techniques for smaller study
areas with sparse datasets. The framework offers a better
mean RMSE and R? than the bias-corrected regional climate
model output at prediction time. MFGP and APHRODITE
perform similarly, on average. Contrasting the two products
across the basins shows a general consensus about the total
amount of annual precipitation. However, there are key areas
where predictions diverge, including over high altitudes in
the winter and the north of the upper Beas Basin during the
summer monsoon. Furthermore, the MFGP model also pro-
vides principled and well-calibrated uncertainty quantifica-
tion. The model also provides a higher effective spatial reso-
lution, providing more than 3 times the structure than ERAS
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and APHRODITE at a 0.25° resolution. The continued im-
provements of these estimates will be key factors to improv-
ing hydrological modelling and water security policy. Fu-
ture work could apply the framework across High-mountain
Asia; predict precipitation on a daily timescale; conduct sen-
sor placement analysis; and implement variational, product-
of-experts, or low-rank approximations to MFGP framework
to improve computational tractability.

Appendix A: More Bayesian inference
Al Learning Gaussian process hyperparameters

For multiple input—output pairs X and Y, the logarithm of the
marginal likelihood is calculated. This is defined as the prob-
ability density of the observations given the hyperparame-
ters:

1 _
log(p(Y|X,0)) == (¥ = ) (K+0,.1) 'Y — )
(A1)
- %1og(|K+a,%I|) - %log@n),

where K is the covariance matrix constructed from the ker-
nel function k and o, is the noise specified at the observa-
tions. The logarithm of the likelihood is used to simplify the
differentiation during maximum likelihood estimation of the
hyperparameters.

A2 Predicting with Gaussian processes

Assuming a Gaussian likelihood for € (see Eq. 1), calculat-
ing the posterior distribution, p(f,|Y, X, X,), is tractable
and can be used to perform predictive inference of f, at new
inputs X as follows:

PUfY. X, X,) = N (f i 1 (X0), 07 (X)) (A2)

Predictions are computed using the posterior mean, /i,
while the uncertainty associated with these predictions is

quantified through the posterior variance, 02
—1
e (X) = ks (K+0,1) Y, (A3)
-1
Uf(X*) = ko _k*N(K+UnZI) kzN’ (A4)

where k.y =k(X4, X) and k. =k(X4, Xy). In other
words, the variance captures how much uncertainty remains
after seeing the data.
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A3 MFGP inference

At each level of the MFGP, the predicted mean, u;, and vari-

ance, 0,2, are given by

we(Xs) = oritr—1(X4) + Merr
+ln, K Y1 = oot 1 (X0) = prer],
Utz(X*) = pzzazz_l(X*) + ko — k*N,Kflka, , (A6)

(AS5)

where X, is a set of test points used over the domain of
interest and N, denotes the number of training point loca-
tions where we have observed data from the ¢th information
source. The mean and the uncertainty are thus elegantly prop-
agated from one fidelity layer to the next. As the sum of two
GPs is another GP, we can also write out the MFGP model as

fir | -1 ki1
|:ft ] GP<|: Mt ][szzl

Appendix B: Metric definitions

prki—1
. (A7
ptzk,,l + kerr :|> (A7)

B1 Root mean square error

The RMSE represents the typical distance of the model from
the data. For multiple input—output pairs {X, Y}, the RMSE
is given by

RMSE = /(Y — f)?), (B

where f is the model’s predicted values at X. We use ( - )
here and in the following definitions as a shorthand for
the average over the data points. The RMSE is sensitive to
outliers and systematic errors. The 5th- and 95th-percentile
RMSE values are calculated by computing the RMSE for the
high-fidelity data points in the 5th- and 95th-percentiles re-
spectively.

B2 Coefficient of determination

The R? represents the percentage of the data variance that
can be explained by the model. It is given by

SSres — 1 ZIN()’i - f1)2

RP=1- = ~ =,
SStot Y i —y)?

(B2)
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where y; is the ith observed value, f; the ith predicted value,
and N the total number of data points. SS;eg is the sum of the
squared residuals and SSy the total sum of squares. An R?
of 1 indicates a perfect fit, whilst a negative R> means the
model performs worse than the mean. Although negative R>
scores are unlikely in interpolation settings, they are possible
when making predictions outside of the training distribution.

B3 Mean log loss

Using the predictive distribution at each test input, the proba-
bility of the target given the model can be calculated. The log
loss (Rasmussen and Williams, 2006) is given by taking the
negative logarithm of this probability. Taking the mean over
all inputs gives the mean log loss (MLL):

MLL = — (log p(Y |6, X))
(Y—M? (B3)

1 2
:<§log(2na )+ 752

where 6 is the set of optimised hyperparameters and ¢ and
1 are the predicted mean and variance at X. Smaller values
imply more skill. The MLL is calculated prior to the inverse
Box—Cox transformation as this metric assumes the model
output is Gaussian.

Appendix C: Further data analysis

This appendix brings together more analyses around the val-
idation experiments. More specifically, Table C1 compares
observational data over Europe and the upper Beas and Sut-
lej basins and their optimised GP hyperparameters. Overall,
this breakdown shows that the distribution of precipitation
over the upper Beas and Sutlej basins is more complicated
than that over Europe despite a similar standardised gauge
density/GP length scales between gauges.

Table C2 shows the performance of the benchmark
datasets for the upper Beas and Sutlej validation experiment.
These results are not directly comparable to the MFGP model
as the data used to create these products are or are likely in-
cluded in the held-out validation sets. They can, however,
give us a indication of how well these models perform in ab-
solute terms for this gauged area.
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Table C1. Precipitation statistics over Europe and Beas and Sutlej (BS) using gauge data from 2000 to 2005. The mean, standard deviation,
Sth- and 95th-percentile values, and length scale values for the datasets are presented. The length scales are calculated by fitting a GP with a
Matérn % kernel to each of the gauge datasets with time, latitude, longitude, and elevation as inputs.

Metric Mean SD Sth percent  95th percent GP liong ‘ GP f15¢
Unit [mm d_l] [mm d_l] [mm d_l] [mm d_l] [°E]  z score ‘ [°N]  zscore
VALUE gauges 2.39 2.19 0.22 6.61 4.96 0.47 3.80 0.49
BS gauges 2.95 3.98 0.00 11.17  0.26 0.52 0.23 0.48

Table C2. RMSE and R? for benchmark datasets over upper Beas and Sutlej basins between 2000 and 2010. Only stations located in
the basins (46 out 58) are used to evaluate the datasets. The errors represent the standard deviation across the stations. As some of these
benchmarks are or are likely produced using the station data, it is not possible to compare these results with the previous table. Bolded
values show the best model performance for a given metric. * ERAS5 uses only remote sensing data for precipitation measurements but is also

constrained using direct measurements for other climatic variables.

Input features RMSE [mmd~!] RMSE5 [mmd~!] RMSE95 [mmd—!] R?
ERAS Multiple™* 3.03£1.05 0.53£0.58 6.01 £3.52 —0.30£2.18
APHRODITE Gauges 2.274+0.92 0.27 +£0.30 5.35+3.26 0.45 +0.68
TRMM Remote sensing 3.83£1.36 0.58 £0.77 8.18 £4.27 —0.22£0.68
CRU TS Gauges 2.87+1.20 0.43+0.24 7.59+£4.71 0.19£1.22
Bias-corrected WRF  Gauges + WRF 3.12£1.00 0.37£0.72 7.02+4.21 —-0.10£1.77
Appendix D: MFGP time sensitivity 10
— fold 1
The computational complexity of the MFGP framework only = fold 2
allows the modeller to train over climatically short periods 081 _ :Z:Si
of time. In this study, we assume that long-term variabil- — fold 5
ity is accurately captured by ERAS and that there is lim- 0.6
ited information to learn by training over longer time periods.
This assumption is tested in the following experiment, where %
we repeat the data-sparse version of the European valida- 041
tion experiment over different time ranges. Figure D1 shows
the model performance as a function of the number of time 0.2
points for the different folds. Aside from a dip at the 2-year
mark, there is no generalised trend change between different 00

time periods across folds.
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Figure D1. R? as a function of years used to model the data across
the different folds of the data-sparse experiment over Europe.
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Appendix E: Machine learning baseline results

To contextualise the performance of the MFGP models lin-
ear interpolation and downscaling using random forests and
support vector regression, the models are applied to the val-
idation experiments presented in Sect. 4. These models have
no explicit way of merging multiple data sources; instead, we
use ERAS as a fifth input to models. The random forest mod-
els were trained with 100 trees, and the stopping tolerance for
the support vector regression model was set to 1073, We note
that no systematic hyperparameter search was performed for
these models.

We also compare the MFGP to a convolutional conditional
neural process (ConvCNP). In this setup, we used the high-
fidelity elevation as a context dataset to the model. The model
itself was trained using a U-Net with four downsampling lay-
ers each, with 64 channels, an internal density of 500, and a
learning rate of 5 x 1075, and by sampling all the data at
each time step to create the training tasks. The models are
trained for 20 and 15 epochs for the Europe and Beas—Sutlej
experiments respectively. Again, no systematic hyperparam-
eter search or tailored sampling approach was performed for
the ConvCNP models.

Table E1. Performance of models trained on ERAS data for the data-rich setup over Europe. We include a linear interpolation model, a
random forest (RF), a support vector regression (SVR) model with a smooth radial basis function (RBF) kernel, a ConvCNP, and the MFGP
model. The metrics include the average RMSE, the Sth-percentile RMSE (RMSES), the 95th-percentile RMSE (RMSE95), the R? score, and
the MLL. The MLL is not calculated for the deterministic methods. The errors represent the standard deviation across the validation folds.

Model Training features RMSE [mmd~!] RMSE5 [mmd—!] RMSE95 [mmd~!] R? MLL
Linearreg. ERAS5 1.724+0.46 1.75+0.18 521+1.55 0.04+£0.06 -

RF ERA5 + gauges 1.12+0.44 0.45+0.19 2.62+0.93 0.61£0.09 -
SVRrgr  ERAS + gauges 1.144+0.46 0.53+£0.33 3.03+£1.48 0.60+0.12 -
MFGP ERA5 + gauges 1.06 + 0.42 0.51+£0.20 272 +1.54 0.65+0.09 0.89+0.20
ConvCNP  ERAS + gauges 2.16+£0.76 2.29+0.93 4.25+1.60 —0.49+£048 2.40+0.91

Table E2. As Table E1 but for the data-sparse setup over Europe.

Model Training features RMSE [mmd~—!] RMSE5 [mmd—!] RMSE95 [mmd~!] R? MLL
Linearreg. ERAS5 1.77 £0.46 1.88+0.25 5.19+1.76 —0.02+0.13 -

RF ERAS5 + gauges 1.16£0.39 0.41+0.20 2.92+1.39 0.57+0.10 -
SVRrgr  ERAS + gauges 1.53+£0.62 0.73+0.23 4.64 £1.99 0.29+0.19 -
MFGP ERA5 + gauges 1.13+0.47 0.57+£0.23 3.02+£1.62 0.62+0.11  0.90+0.20
ConvCNP  ERAS + gauges 1.9240.51 1.774+0.78 4.8441.70 —0.21+£034 236+1.38

Hydrol. Earth Syst. Sci., 28, 4903-4925, 2024

https://doi.org/10.5194/hess-28-4903-2024



K. Tazi et al.: Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes

Table E3. As Table E2 but for the upper Beas and Sutlej basins.
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