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A B S T R A C T   

A set of Quantitative Precipitation Estimates (QPEs) from a dual-polarisation X-band radar observation campaign 
in a mountainous area of Northern Scotland is assessed with reference to observed river flows as well as being 
compared to estimates from the UK C-band radar and raingauge networks. Employing estimation methods of 
varying complexity, the X-band QPEs are trialled as alternative inputs to Grid-to-Grid (G2G), a distributed hy-
drological model, to produce simulated river flows for comparison with observations. This hydrological 
assessment complements and extends a previous meteorological assessment that used point raingauge data only. 
Precipitation estimates for two periods over the observation campaign in 2016 (March to April and June to 
August) are assessed. During the second period, increased incorporation of dual-polarisation variables into the 
radar processing chain is found to be of considerable benefit, whereas during the first period the low height of the 
melting layer often restricts their use. As a result of the complex topography in Northern Scotland, the Lowest 
Usable Elevation (LUE) of the X-band radar observations is found to be a stronger indicator of the hydrological 
model performance than range from the radar. For catchments with an LUE of less than 3 km, the best X-band 
QPE typically performs better for modelling river flow than using an estimate from the UK C-band radar network. 
The hydrological assessment framework used here brings fresh insights into the performance of the different 
QPEs, as well as providing a stimulus for targeted improvements to dual-polarisation radar-based QPEs that have 
wider relevance beyond the case study situation.   

1. Introduction 

Observing, in a quantitative and robust way, the dynamic space–time 
pattern of precipitation in hilly and mountainous terrain presents a 
major challenge of great practical importance across the world. A 
common approach is to obtain Quantitative Precipitation Estimates 
(QPEs) using observations from networks of weather radars and/or 
raingauges. Such gridded QPEs have a wide range of applications from 
the images seen on weather forecasts through to their quantitative use in 
hydrological modelling, river flow forecasting and water resource 
simulation. However, there are a number of issues to be considered 
when forming such QPEs for high-latitude, mountainous regions. 

Networks of raingauges are typically sparse in mountainous areas 
due to difficulties of access, so lack representativity in capturing the 
complex rainfall patterns found in these topographically-varied 

domains. Further problems can be associated with wind-induced under- 
catch, solid-phase precipitation and instrument blockage, wetting and 
evaporation loss (Sevruk, 1982; Price, 1999). Weather radar networks 
provide better spatial coverage and can be used in isolation, or in 
combination with raingauges to make the best of these complementary 
sensors of areal and point rainfall. However, such radar networks often 
provide less than ideal observation coverage or quality in areas of high 
relief, due to issues such as beam blockage, range effects, and variability 
in the vertical profile of precipitation including changes of water phase 
and low-level orographic enhancement. In addition to the impact of 
range on beam broadening and non-uniform beam filling, overshooting 
of precipitation becomes more likely in areas of orography (Koistinen 
and Pohjola, 2014; Yu et al., 2018). A particular issue affecting high- 
latitude locations is the presence of a melting layer which can be close 
to the surface and appear as enhanced radar reflectivity via the “bright 
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band” effect. The robustness of radar rainfall estimates is also dependent 
on artefacts of the sensed environment and post-processing operations. 

The introduction of dual-polarisation radar capabilities has brought 
benefits to precipitation estimation (Ryzhkov and Zrnić, 1995, 2019; 
Illingworth, 2004; Montopoli et al., 2017; Wijayarathne et al., 2020) and 
river flow simulation in mountainous terrain (Anagnostou et al., 2018). 
However, a detailed assessment of the benefits to hydrological model-
ling of the different dual-polarisation processing steps and retrievals has 
not been undertaken: this is an important novelty of the paper presented 
here. Studies investigating the improvement for hydrological simulation 
of employing dual-polarisation relative to single-polarisation are few. 
One example is the study by Gourley et al. (2010) for nine severe storm 
events from 2005 to 2008 over a 813 km2 catchment area in Oklahoma, 
USA, with a hydrological focus on a 342 km2 gauged catchment. They 
found that improved hydrological model performance was only ach-
ieved once long-term biases in the QPEs were identified and corrected 
for. Whilst the single-polarisation QPE, assessed against raingauges, had 
a lower bias (− 9 % compared to − 31 %), the best dual-polarisation QPE 
had a bias that was stationary whereas that of the single-polarisation 
QPE fluctuated with event rain-intensity, attributed to varying drop- 
size distributions and hail. This provides evidence for dual- 
polarisation stabilising the error structure across varying types of 
storm. Correction for bias resorted to use of the raingauge network. 
Seeking improvement through studies of radar QPE errors, focussed on 
range effects across a range of environments, was recommended for 
future work. A more recent hydrological assessment employing dual- 
polarisation radar by He et al. (2018) focussed on a flat area of 
Denmark with a complex hydrological regime influenced by ground-
water. There was little to choose between the use of raingauge, single- 
and dual-polarisation QPEs for these environmental conditions, whilst 
the potential benefits of dual-polarisation in complex terrain was 
recognised. 

Application of X-band dual-polarisation radars for QPE in moun-
tainous environments has several advantages over more conventional 
network radars (Lim et al., 2014; Yu et al., 2018). Known limitations of 
X-band radar - such as their increased susceptibility to attenuation and 
typically lower azimuthal interval (due to smaller antenna sizes) - are 
less relevant in mountainous environments where topographic blockage 
and low-level precipitation formation typically impose severe con-
straints on the maximum useful radar range. The reduced cost of X-band 
radars - when compared to C-band or S-band systems - is particularly 
advantageous: making them well suited for filling gaps within existing 
radar networks to rectify areas of poorer local coverage. In addition, 
dual-polarisation has advantages in mountainous areas since phase-shift 
based precipitation estimators (using specific differential phase) are 
immune to the effects of partial beam blockage which are prevalent in 
such locations. This allows the use of radar observations from lower 
elevations than would be possible with a single polarisation system. The 
benefit is greatest for X-band radars as phase shift measurements from 
lower wavelength radars have a greater sensitivity to precipitation in-
tensity (Sachidananda and Zrnić, 1986; Anagnostou et al., 2004). 

Turning to hydrological use, based on experience limited to using 
networks of single-polarisation C-band radars and raingauges in the UK, 
precipitation estimates from raingauges have been preferred over radar- 
based QPEs for hydrological model development (Cole and Moore, 
2008, 2009; Moore et al., 2012). Partly, this is down to the more stable 
error structure of raingauge data - associated with the simplicity of 
direct measurement and application of quality-control checks (e.g. 
Howard et al., 2012) - which can be partially eliminated from modelled 
flows during the calibration of the hydrological model. 

In contrast, a range of artefacts can feature in the radar errors, arising 
from the sensed environment or in the post-processing, with some not 
readily diagnosed or corrected. Radar-based QPEs can suffer from 
transient under- or over-estimation of the precipitation on sub-daily and 
sub-hourly timescales. Although radar rainfall performance can be 
improved through applying radar-raingauge adjustment or merging 

methods, the effect of transient errors can persist and affect estimator 
robustness. It is in the context of increasing QPE robustness that dual- 
polarisation methodologies show greatest promise for improving radar 
rainfall use in hydrological modelling: this is an important motivator for 
the work reported on here. Further, there are particular advantages in 
radar rainfall for hydrological applications at smaller spatial and tem-
poral scales, such as for modelling flash-floods and in urban hydrology 
(Berne and Krajewski, 2013; Thorndahl et al., 2017), where convective 
storm cells may be missed completely by the relative sparsity of a 
raingauge network. 

The work presented here employs a unique radar dataset from the 
RAiNS (Radar Applications in Northern Scotland) campaign (Bennett, 
2019; Neely et al., 2021). This campaign deployed the NCAS mobile X- 
band dual-polarisation Doppler weather radar (NXPol), available for 
research studies (Neely et al., 2018), in the Scottish Highlands near In-
verness over two periods in 2016. The aim of the present work is to 
assess the improvement to radar QPEs particularly for use as input to a 
hydrological model for simulating river flow over an area where the 
existing national network of weather radars and raingauges has known 
shortcomings. Importantly, it has been possible to exploit NXPol data to 
produce QPEs using processing chains of varying complexity and 
differing extent of use of dual-polarisation capability. 

Previously, Neely et al. (2021) had shown that precipitation esti-
mates from the second period of the RAiNS campaign were able to 
outperform estimates from the UK C-band radar network for certain 
parts of the study area when assessed against raingauge measurements. 
The present investigation aims to assess whether these benefits to QPE 
pass through to hydrological model simulations of river flow in moun-
tainous locations, and ascertain any dependence on the characteristics of 
the catchments being modelled and the season of the year. To undertake 
this, NXPol-derived QPEs from both periods of the RAiNS campaign 
along with estimates from the UK C-band network and raingauge data 
are used as input to the G2G distributed hydrological model, and 
assessed by comparing the model-simulated river flows against obser-
vations at gauged locations. Importantly, such a hydrological assess-
ment essentially integrates QPEs over space and time, complementing 
the traditional point-based meteorological comparison with raingauge 
data: it can provide additional insights into the performance of the QPEs, 
helping to stimulate future improvements to radar-based QPE methods. 
The hydrological approach through its space–time integration allows the 
radar-estimated precipitation to be evaluated over entire catchment 
areas, circumventing both potential raingauge issues and reducing 
sensitivity to localised artefacts in radar-based QPEs that may heavily 
influence such point-based assessments. The results of this investigation 
are likely to be of value to those interested in the use of dual-polarisation 
capabilities in networks of C-band radars, as well as for X-band radars 
deployed for network coverage infill purposes and for local, high- 
resolution applications relating to urban storm drainage management. 

This paper is organised as follows. First, in Section 2, details are 
given of the dual-polarisation X-band radar campaign over northern 
Scotland including the methods of increasing complexity used in 
NXPol’s QPE processing chain. Section 3 describes two alternative 
gridded QPEs included in the assessment of methods, one from the 
network C-band radars and the other from interpolating raingauge data. 
Section 4 outlines the G2G distributed hydrological model and how it is 
used to obtain simulated river flows from each QPE method for com-
parison with observations across selected catchments (detailed in Sec-
tion 5). The performance statistics used to assess each QPE method, 
through comparison of modelled and observed river flow, are described 
in Section 6. Section 7 describes the performance assessment of the QPE 
methods and examines the influence on performance of the Lowest Us-
able Elevation (LUE), the radar range and the study period. A broader 
discussion and concluding remarks follow in Section 8. 
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2. The dual-polarisation X-band radar campaign over northern 
Scotland 

2.1. Study area 

The location of the NXPol radar at Kinloss Barracks, near Inverness in 
the Scottish Highlands, is shown as a red dot in Fig. 1a. This site was 
chosen for the radar to infill an area of reduced coverage in Scotland 
within the C-band weather radar network across the British Isles. 
Comparison to raingauge measurements over this area have shown 
radar rainfall estimates to be less accurate (Worsfold et al., 2014), 
particularly on account of the large distance to the nearest C-band radar 
and also in relation to topography and beam blockage effects (Harrison 
et al., 2012). The C-band radar network includes four installations in 
Scotland. Locations of two of them - at Druim a’Starraig (166 km to the 
northwest of NXPol) and at Hill of Dudwick (95 km to the east) - are 
marked as blue dots in Fig. 1a. The other two - Munduff Hill and 
Holehead at distances 161 and 187 km from NXPol respectively - are off 
the map to the south. Also the locations of raingauges in SEPA’s hy-
drometric network over the study area are shown by green triangles in 
Fig. 1a. 

The study area has several mountainous parts: notably the Cairn-
gorms in the eastern Highlands to the south of NXPol (with the summit 
reaching 1309 m) and those of the western Highlands to the west 
(reaching a height of 1150 m within 100 km of the radar site). These lead 
to radar beam blockages and local orographic enhancements to the 
precipitation, both of which provide additional challenges for radar QPE 
(Georgiou et al., 2012). The spatial distribution of annual average 
rainfall in the region is variable: from less than 700 mm for some areas of 
the eastern coast, to greater than 3000 mm over some parts of the 
western Highlands (1981–2010 average precipitation map; Met Office, 
2018). An additional challenge is posed by the typically low altitude of 
the melting layer during winter, which often leads to accumulations of 
solid precipitation particularly in upland areas. The low melting layer 
limits the effectiveness of dual-polarisation processing, which is partly 
based on the electromagnetic scattering properties of liquid precipita-
tion, and is particularly pronounced when the surface topography re-
quires that QPE uses higher altitude radar data. On the other hand, the 
study area is well suited for assessing precipitation using hydrological 
models as topography acts as a dominant control on runoff production. 
The impermeable geology means there are no groundwater transfers 
between catchments, and the baseflow fraction is low so antecedent 
condition effects do not persist for extended periods of time. Addition-
ally, the headwater catchments are typically rapidly responding which 
limits the possible temporal averaging of transient errors in the QPE. 

2.2. Description of NXPol QPEs assessed 

To deal with mountainous terrain in the vicinity of NXPol, radar 
scans are taken at different angles relative to the ground. Observations 
from those scans considered to be at the LUE are combined to create a 
two-dimensional QPE. Full details of the NXPol radar and its rain- 
retrieval methods are provided in Neely et al. (2021). Briefly, the sys-
tem has a 75 kW peak power output split between the two transmit 
channels, operates using simultaneous transmit and receive (STAR) for 
dual-polarisation moment estimation, has a 2.4 m antenna leading to a 
half-power beam width of 0.98◦ (narrower than most X-band systems), 
and operates without a radome. In this campaign NXPol collected a 
volume of observations consisting of ten 360◦ Plan Position Indicator 
(PPI) sweeps at increasing elevation angles, including but not limited to 
0.5, 1, 1.5, 2, 3, 4◦. Each PPI has an azimuthal interval of 1◦ and a 150 m 
range-gate spacing to a maximum range of 150 km. The full volume scan 
cycle took approximately 5.5 min and is labelled in this analysis by the 
start-time of each volume. Using a static look-up table based on the 
minimum detectable signal and the occurrence of clutter, each volume 
of PPIs was collapsed into a single LUE product. 

The LUE method described in Neely et al. (2021) differs from the 
typical radar data gridding approach as it considers the impact of the 
blocked fraction on the minimum detectable signal with increasing 
range, rather than using a fixed fraction to eliminate low elevations. It 
also incorporates the impact of ground clutter on radar data quality, 
substituting areas that have significantly elevated echo occurrence 
percentages with data from higher elevation angles. To achieve this, 
data for each range gate are taken from the lowest elevation that has 
both a minimum detectable signal of 10 dBZ (factoring in the impact of 
beam blockage based on a static partial beam blockage correction) and 
an echo occurrence percentage of less than 75 % based on a static clutter 
map from six non-consecutive clear-air days. This approach is a neces-
sary compromise between avoiding excessive beam blockage and 
ground clutter, and the possibility of overshooting of low-lying precip-
itation for scans with higher angles. The overshooting of precipitation 
becomes especially problematic behind mountains and is expected to 
result in a considerable underestimation of the precipitation for catch-
ments with LUE greater than around 3 to 4 km. 

A map of catchments used in this study, shaded according to their 
mean LUE, is shown in Fig. 1b. Regions of high LUE, and anticipated 
poorer QPE performance, are clearly visible to the south and west. Areas 
near the radar, and also across the sea to the north, and, to a lesser 
extent, along the Great Glen (a geological fault line) to the south-west, 
have lower LUE even for catchments that are a long distance from the 
radar site. 

Ten different NXPol QPEs (summarised in Table 1) were assessed 
using hydrological simulation in this study. The first five of these 
methods (R(Z) to R(ZC)) in Table 1) all make use of the Marshall-Palmer 

Fig. 1. a) Elevation map of NE Scotland 
showing the NXPol site (red dot), C-band 
radar sites (blue dots), and concentric circles 
indicating distances of 50, 100 and 150 km 
from NXPol. Black lines indicate the bound-
aries of the catchments used in this study. 
Green triangles mark the locations of rain-
gauges. b) The catchments shaded according 
to their mean Lowest Useable Elevation 
(LUE) for NXPol. The boundaries of four 
gauged catchments used as examples are 
delineated by bold lines, with fine lines 
showing gauged sub-catchments within 
them.   
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relationship, Z = 200R1.6, between reflectivity, Z, and precipitation rate, 
R (Harrison et al., 2012; Marshall and Palmer, 1948) but represent a 
progression of increasing data processing. This starts with R(Z), which 
simply applies the Marshall-Palmer relationship to the calibrated hori-
zontal reflectivity as measured by NXPol, thus providing a baseline for 
the assessment of all other methods. The second method, R(Z+DTM), 
applies a partial beam blockage correction based on a Digital Terrain 
Model (DTM) to the horizontal reflectivity before precipitation estima-
tion. This method is implemented using wradlib (Heistermann et al., 
2013) using 1 arc-second SRTM (Shuttle Radar Topography Mission) 
data for the surface topography. R(Z+DTM+QC) additionally applies 
dual-polarisation quality control (QC), removing second trip echoes and 
non-meteorological echoes using a fuzzy logic approach followed by 
removal of isolated pixels using connected component labelling (Dufton 
and Collier, 2015; Dufton, 2016). R(Z+DTM+QC+At) then applies 
attenuation correction through the implementation of the ZPHI method 
(Testud et al., 2000). In this instance a minimum precipitable path 
length of 3 km (10 continuous range gates identified as meteorological 
by the fuzzy logic QC) is required for data assumed to be below the 
melting layer based on extrapolation of surface temperature data using a 
fixed lapse rate of 6 ◦C/km. Differential phase shift is smoothed using a 
modification of the Hubbert and Bringi (1995) iterative method prior to 
identification of the phase limits for the calculations (Dufton, 2016). The 
method assumes a constant factor of 0.27 dB/deg to estimate specific 
attenuation from specific differential phase (also used in later methods 
for direct precipitation estimation). R(ZC) is identical to the previous 
method with the exception of the partial beam blockage correction being 
applied. In this case the correction is derived from the consistency of 
polarimetric variables during the summer of the RAiNS deployment, as 
proposed by Diederich et al (2015a). This leads to higher estimates of 
the correction needed when compared to the DTM approach: see Neely 
et al. (2021) for more details. 

The next five methods make use of either specific attenuation, spe-
cific differential phase or both to calculate the QPEs, with R(ZC) being 
used as an infill when these methods are not possible (above the melting 
layer in the case of specific attenuation, for example). R(Ah) estimates 
precipitation intensity using specific attenuation, Ah, assuming an at-
mospheric temperature of 10 ◦C leading to a relationship of 
R = 45.5Ah

0.83 (Diederich et al., 2015b) where Ah is estimated during 
attenuation correction by the ZPHI method. R(Ah,thr) is identical to R 
(Ah) when the total differential phase shift along the rain region path 
identified exceeds 5◦, but otherwise defaults to R(ZC). Considering this 
method allows an assessment of the impact of potentially spurious re-
sults during light rainfall conditions where noise in the differential phase 
shift measurements could have a significant impact. R(Z(Ah)) uses the 
same 5◦ threshold on the total differential phase shift used with R(Ah,thr) 
but instead converts Ah into a synthetic equivalent horizontal reflec-
tivity, Zh,syn, for use in the Marshall-Palmer relation. This is the same 
approach taken to derive the dual-polarisation beam blockage correc-
tion introduced in the R(ZC) method. This approach acts as a dynamic 
bias correction to reflectivity, while still using the Marshall-Palmer 

relation, which is a good climatological fit for UK precipitation esti-
mation. R(KDP-Z) instead focuses on using specific differential phase, 
Kdp, for the estimation of precipitation. Here the method uses the rela-
tionship from Ryzhkov et al. (2014) where the estimates are blended 
with those from R(ZC) at all Kdp estimated precipitation intensities be-
tween 10 and 20 mm h− 1 using a linear weighted average. Below 
10 mm h− 1, R(ZC) is used without Kdp input. The weighting accounts for 
the well-known difficulties of estimating small values of Kdp (Vulpiani 
et al., 2012). The final method, R(Dual-Pol), is a combination of R(Z 
(Ah)) and R(KDP-Z) where specific attenuation based estimates are used 
as first preference, followed by those utilising specific differential phase, 
and finally reverting to reflectivity where these estimates are not 
available. All QPE methods are applied to the published calibrated 
NXPOL radar dataset, where horizontal reflectivity is calibrated using 
polarimetric self-consistency and differential reflectivity is calibrated 
using vertically pointing radar scans (Bennett, 2019; Neely et al., 2021). 
Since specific attenuation and specific differential phase are immune to 
radar miss-calibration, QPE methods involving them will be less sensi-
tive to any temporal variations in radar calibration over the study 
period. All NXPol radar data processing is coded in python, taking 
advantage of the open source libraries Py-Art (Helmus and Collis, 2016) 
for reading and writing CfRadial files and wradlib (Heistermann et al., 
2013) for DTM estimation and gridding of the data. No raingauge or 
climatological adjustments are applied to the NXPol-derived QPEs to 
avoid confounding the current analysis which is focussed on comparing 
QPEs of increasing complexity in their use of radar variables. The stra-
tegic aim is to develop an X-band radar processing chain to which 
additional corrections can be applied and assessed as part of a staged, 
evolutionary process. This allows for consideration of raingauge data at 
a later stage, perhaps as part of a wider multi-sensor network. 

QPE products were produced for two periods in 2016: Period 1 from 
1 March to 30 April and Period 2 from 1 June to 17 August, with an 
interval of down-time for the radar in between. The melting layer was 
typically much lower during Period 1, with median heights of 1043 and 
2243 m for the two periods respectively: this results in much more 
frequent use of R(ZC) as a fall-back for the dual-polarisation QPEs over 
Period 1. 

For use with the G2G distributed hydrological model, the LUE 
products created on the native polar coordinate system of the NXPol 
were regridded onto a 1 km Cartesian rectilinear grid using the area- 
weighted average of all 2D polar radar pixels intersecting with each 
Cartesian grid-cell. Missing and filtered radar pixels within a grid-cell 
are excluded from the average provided they cover less than 30 % of 
the area, after which they are set to NaN and counted as having zero 
precipitation by G2G. The resulting rectilinear coordinate system is the 
same as used by the network C-band QPE product. To produce contin-
uous QPEs for use in the hydrological model, any period of greater than 
10 min without NXPol data was infilled using QPEs from the C-band 
network. This included the entire month of May (between Period 1 and 
2), which was subsequently excluded from the analysis of river flow. 
Apart from during May, C-band QPE data were only used 314 times for 

Table 1 
Description of NXPol QPEs used in this study.  

QPE Description 

R(Z) A simple estimate based on the unfiltered horizontal reflectivity with no post-processing beyond calibration. 
R(Z+DTM) A reflectivity-based estimate with simple clutter mitigation and Digital Terrain Model (DTM) based beam blockage correction. 
R(Z+DTM+QC) As per R(Z+DTM) but additionally removing spurious radar echoes. 
R(Z+DTM+QC+At) As per R(Z+DTM+QC) but applying a dual-polarisation based attenuation correction to the beam blockage correction and reflectivity filter. 
R(ZC) Similar to R(Z+DTM+QC+At) except using a specific attenuation derived clutter map to correct beam blockage. 
R(Ah) Specific attenuation is converted into a rain-rate using a fixed R(A) relationship. R(ZC) is used as a fall-back. 
R(Ah,thr) As per R(Ah) except only applying the R(A) relationship where the total differential phase shift exceeds 5◦. 
R(Z(Ah)) Specific attenuation is converted to reflectivity before calculation of the rain-rate. This is used when total differential phase shift is greater than 5◦, otherwise 

R(ZC) is used as a fall-back. 
R(KDP-Z) Smoothly blends an estimate based on the specific differential phase for high-intensity precipitation with the R(ZC) estimate at lower intensities (<20 mm/h). 
R(Dual-Pol) As per R(Z(Ah)) except using R(KDP-Z) for infilling.  
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infilling, of which 275 were used during a 23-hour period of downtime 
between 6 and 7 April. C-band data, as opposed to raingauge data, were 
chosen for infilling so as not to bias comparisons between NXPol and 
C-band QPEs. The irregularly timed QPEs (approximately 5.5 min apart) 
were accumulated using a simple trapezoidal rule, without allowing for 
advection effects, to produce 15-minute precipitation totals for input to 
G2G. Experience in a UK context has shown that accounting for the 
movement and development of storms between time-steps (see, for 
example, Fabry et al. (1994)) normally has little impact on modelled 
river flows for the catchment scales considered here (median catchment 
area 232 km2). 

3. Alternative precipitation sources for comparison 

3.1. R(C-band) precipitation 

The UK Met Office operates four C-band radars in Scotland as part of 
a wider network of 18 weather radars across the British Isles. Data from 
the radars are processed by the Radarnet IV Central Processing System at 
Exeter (Met Office, 2020) to produce an estimate of rainfall intensity at 
ground level. The processing includes clutter removal, beam blockage 
correction, correcting for attenuation and the vertical profile of reflec-
tivity (VPR), adjusting for orographic enhancement, and correcting for 
residual bias using observations from the raingauge network (Harrison 
et al., 2006; Darlington et al., 2016a,b). These corrected data are then 
composited into a UK-wide gridded precipitation product. 

The gridded C-band rainfall intensity data used in this study were 
sourced from a live data-feed supplied by the Met Office on a 1 km 
Cartesian grid with a 5 min time-step. These data are identical, up to 
minor differences in the occurrence of missing data, to the 1 km reso-
lution UK Composite Rainfall product available from the CEDA Archive 
(Met Office, 2003). These gridded time-series were accumulated 
(without accounting for advection, as per NXPol QPE) to form a C-band 
QPE of 15-minute rainfall totals on a 1 km grid for input to the G2G 
hydrological model. 

While there are several processing elements in common between 
NXPol and the operational C-band processing, the latter includes a 
greater use of external data sources including weather model fields for 
VPR correction and orographic enhancement adjustment, and rain-
gauges for bias correction (Harrison et al., 2009, 2012; Georgiou et al., 
2012). 

3.2. Raingauge precipitation 

Raingauge data from SEPA’s hydrometric network were used to 
produce gridded 15-minute rainfall accumulation estimates for the 
whole of Scotland, including the study area, on a 1 km grid. This used a 
multiquadric interpolation technique (Hardy, 1971) in an extended 
form (Cole and Moore, 2008) employing a Euclidean measure of dis-
tance and zero “offset” which is equivalent to Kriging with a linear 
variogram (Borga and Vizzaccaro, 1997). Quality control of the rain-
gauge data was performed as an initial step using the methods presented 
in Howard et al. (2012). This precipitation estimate provides a useful 
baseline, one previously found to produce the best modelled river flow 
and subsequently chosen for calibration of the G2G model (Cole and 
Moore, 2009). 

For the study period, the raingauge network consisted of approxi-
mately 290 tipping-bucket raingauges over the whole of Scotland, and 
over the studied catchments a mean gauge density of approximately-one 
raingauge per 290 km2 (calculated using the ArcMap point density tool 
with a 20 km neighbourhood). Raingauge locations within the study 
area are mapped in Fig. 1a. 

4. The G2G model 

The Grid-to-Grid (G2G) model is a distributed physical–conceptual 

hydrological model (Bell et al., 2009; Environment Agency, 2007, 2010; 
Moore et al., 2006) used for a range of research and operational appli-
cations including flood forecasting by both the Scottish Flood Fore-
casting Service (Cranston et al., 2012) and the Flood Forecasting Centre 
for England and Wales (Price et al., 2012). G2G is underpinned by 
spatial datasets on landscape properties (elevation, soil/geology and 
land-cover) in support of its area-wide application, and also employs 
precipitation, potential evaporation and air temperature as gridded 
time-series inputs. To account for sub-grid heterogeneity, the Probabil-
ity Distributed Model (PDM; Moore 1985, 2007) concept is employed 
within each grid-cell to generate surface and subsurface runoff compo-
nents. These runoffs are routed along separate water pathways from 
grid-cell to grid-cell to produce hillslope, river channel, and ground-
water flows; return flows from the groundwater and soil water to the 
surface water pathway are also represented. The G2G model is based on 
water conservation principles with its water balance updated at each 
time-step. 

The G2G setup used in this study follows the version used opera-
tionally by the Scottish Flood Forecasting Service. It runs with a model 
time-step of 15 min and includes use of the G2G Snow Hydrology 
module based on the PACK snowmelt model (Moore et al., 1999). 
Although the use of spatial datasets of landscape properties reduces the 
importance of calibration compared to lumped conceptual hydrological 
models, simulation-mode calibration was used to improve G2G opera-
tional performance. A number of parameters relating to runoff produc-
tion and routing were calibrated across the whole model domain of 
Scotland (rather than just the study area), using river flow observations 
from January to September 2016. Additionally, a further two parame-
ters (controlling channel roughness and return flow from soil water) 
were adjusted separately for each gauged catchment. Calibration paid 
attention to performance over the full flow range as well at high flows, 
relevant to its use for flood forecasting, and employed a mix of visual 
and automated calibration tools. Gridded raingauge precipitation was 
used as input (Section 3.2). Whilst data assimilation of river flow ob-
servations is used to enhance model performance for operational flow 
forecasting purposes, it is not invoked here so as not to confound the 
comparative assessment of simulated river flow using the different QPEs 
as input to G2G. The PACK formulation (Moore et al., 1999) of the G2G 
Snow Hydrology module acts as pre-processing step affecting the input 
precipitation. Air temperature is used as a threshold to differentiate 
between liquid and solid precipitation and also to control the melting 
process through a temperature-excess formulation; the storage and 
release of water in the snowpack is also represented. 

The potential evaporation (PE) and air temperature inputs used here 
are those employed in G2G operationally. For PE, a standard annual 
profile grid of monthly averages was employed, calculated as the 
monthly average MORECS PE (Thompson et al. 1981; Hough and Jones, 
1997) using the 40 km gridded monthly values over the 1981 to 2010 
period. Air temperature was from the Post Processing of the UK Met 
Office weather prediction model (UKPP) for a height of 1.5 m and ob-
tained at a 2 km and hourly space–time resolution. Data were down-
scaled to a 1 km grid using a lapse rate of 5.9 ◦C/km to account for 
differences in mean elevations between the 2 and 1 km grid-cells. 

5. Catchment selection and river flow data 

Fig. 1 maps the 57 gauged catchments and sub-catchments selected 
for inclusion in this study. These were chosen from an original selection 
of 63 catchments having a mean distance of less than 100 km to the 
radar site and of interest to SEPA. Of the original 63 catchments, two 
were discounted due to missing river flow observations and two more 
through inspection of hydrographs revealing significant sub-daily fluc-
tuations that were attributed to measurement error. A further two sites 
were discounted as G2G simulated flows were found to perform poorly 
regardless of precipitation input type. The river flow data at 15 min 
intervals were obtained from SEPA. 
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6. Performance statistics used for hydrological assessment of 
QPEs 

To describe the performance of the modelled river flows and, by 
extension, that of the precipitation estimates used to produce them, 
several statistics are employed. Each compare modelled flows to ob-
servations, and each aim to capture a different aspect of performance. 

One statistic, the R2 Efficiency - also known as the Nash-Sutcliffe 
Efficiency (Nash and Sutcliffe, 1970) - is defined as 

R2 = 1 −

∑
(Qt − qt)

2

∑
(Qt − Q)

2. (1)  

Here qt and Qt are, respectively, the modelled and observed flow at time- 
step t, and Q is the mean observed flow over the period. This commonly 
used statistic places a higher weight on the larger absolute discrepancies 
that are typically found for high flows. As such, it is particularly useful in 
assessing the high flow regime and as an indicator of an input pre-
cipitation’s suitability for use in flood modelling. An R2 Efficiency of 1 
indicates a perfect agreement between modelled and observed flows, 
whilst a value of less than zero indicates that the performance, as 
measured by mean square error, is worse than would be obtained by 
using the observed mean flow value. Note that R2 Efficiency differs in its 
definition from the coefficient of determination r2, where r is the cor-
relation coefficient, which does not account for bias effects on model 
efficiency and therefore has a larger or equal value. 

The correlation coefficient, r, is also calculated. This statistic is 
insensitive to overall absolute and relative (linear) biases in the 
modelled river flow. As such, it may also be less sensitive to bias cor-
rections and other compensations applied to the QPEs, such as those 
featuring in the network C-band but not the NXPol. Correlations have 
values between + 1 for a perfect positive correlation and − 1 for a perfect 
negative correlation, with zero indicating no correlation. 

The modified Kling–Gupta Efficiency (Gupta et al., 2009; Kling et al., 
2012) is defined as 

KGE′

= 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (CVq/CVQ − 1)2

+ ((q/Q) − 1)2
√

(2)  

with CVq and CVQ the coefficient of variation (standard deviation 
divided by mean) for the modelled and observed flows respectively, and 
q the mean modelled flow over the evaluation period. This statistic 
obtains its maximum value of 1 for perfect agreement between model 
and observation. In this study KGE’ is applied to the square-root of river 
flow, denoted as KGE’[sqrt], in order to produce a general metric that 
places weight on low and medium flows as well as high flows: it 
therefore may be sensitive to features in the river flow not adequately 
captured in the R2 Efficiency. 

The percentage bias, 100(q − Q)/Q, in the modelled flow compared 
to the observation is also calculated. This statistic should approximate 
the relative bias in the input precipitation because of: (i) the conserva-
tion of water within the G2G model, (ii) the relatively low contribution 
of evaporation to the water balance for the humid temperate climate of 
Northern Scotland, (iii) the small groundwater component of river flow, 
and (iv) the relatively long time-span of the study period compared to 
typical hydrological response times of the catchments. 

Unless stated otherwise, all performance statistics are evaluated at 
the model time-step of 15 min over the period 1 February to 17 August 
2016, excluding the month of May (for which all NXPol QPEs were 
missing and infilled using R(C-band): see Section 2). The G2G simula-
tions were started on 1 February 2016 with each selected precipitation 
input. To avoid the uncertainty associated with a cold start, and possibly 
poorly initialised water stores in the model, model states that had been 
spun-up using raingauge precipitation from a start on 10 October 2013 
were used. 

Statistics are also used to quantify the influence of snow accumula-
tion and melt on river flow. This involves calculating the fraction of days 

for which modelled flows with gridded raingauge data as input differ by 
more than 20 % when the G2G Snow Hydrology module is included (as 
is standard) or excluded (all precipitation is treated as rainfall). This 
statistic naturally captures the full impact of snow on flows including its 
accumulation, melt, rain-on-snow events, the influence of different el-
evations within a catchment, and how this translates into river flows. 

7. Performance assessment 

The performance of the NXPol R(Dual-Pol) QPE, which makes full 
use of dual-polarisation variables, is assessed first. Each catchment in 
Fig. 2 is shaded according to the R2 Efficiency, correlation, and bias of 
G2G modelled flows using the NXPol R(Dual-Pol) QPE as input. Except 
for a few catchments very close to the radar, and with reference to the 
LUE map in Fig. 1b, the catchments with highest R2 Efficiency and 
highest correlation coefficient are typically those with lower LUEs. In 
contrast, those catchments with high LUEs (exceeding 4 km) have, 
without exception, a strong negative bias (worse than − 50 %) and a 
correspondingly poor R2 Efficiency (below zero), indicating that a large 
portion of the precipitation for these catchments is missed by the 
R(Dual-Pol) QPE. The correlation for these catchments is also often poor 
(usually less than 0.5). 

Modelled river flows, calculated using either R(Dual-Pol) QPE or 
raingauge QPE - for the four example catchments delineated by bold lines 
in Fig. 2 and labelled on Fig. 1b - are compared to observed flows in the 
hydrographs of Fig. 3. Time-series of catchment average precipitation 
and air temperature are also displayed in the figure while catchment 
details and analysis statistics are summarised in Table 2. These catch-
ments were chosen to represent the range of behaviours found in 
modelled river flows using NXPol-derived QPEs as input. In all four cases, 
the use of raingauge precipitation produces modelled river flows that 
compare at least reasonably well to the observations (R2> 0.6, r > 0.8, 
|bias|<20 %, in all cases, see Table 2). For NXPol QPEs, the range of 
behaviour may be summarised as follows. 

Strathy at Strathy Bridge (Fig. 3a). A catchment in the far north of 
Scotland which is distant (92 km on average) from NXPol but has a fairly 
low mean LUE (2.1 km). The R2 Efficiency (0.43) and correlation coef-
ficient (0.68) of modelled flows using R(Dual-Pol) QPE are reasonable 
for this catchment suggesting that LUE has a greater influence on per-
formance than range from the radar, at least up to distances of around 
100 km. The total catchment average precipitation recorded in 
R(Dual-Pol) (321 mm) is 14 % lower than that found using raingauge 
precipitation (373 mm) which feeds through to a bias of − 14 % in 
modelled flows using R(Dual-Pol) (Table 2). Also note that throughout 
Period 1 the catchment’s mean air temperature at ground level is often 
no more than a few degrees above 0 ◦C. This has two consequences. 
Firstly, the catchment’s mean air temperature is frequently below the 
threshold of 0.75 ◦C at which G2G treats precipitation inputs as snow – 
and it will tend to be significantly colder than this at the catchment’s 
higher elevations. This translates into a reasonable impact of snow on 
the river flows (determined as the percentage of days for which the 
modelled flows with and without the inclusion of snow processes differ 
by more than 20 %, see Table 2), even for this relatively low elevation 
catchment. The other example catchments are also affected by snowfall 
to a degree partially determined by their elevation (see Table 2). Sec-
ondly, above the catchment, the low height of the melting layer almost 
totally prevents the calculation of the specific attenuation, which is 
based on the properties of liquid water. Hence, R(Dual-Pol) will be 
identical to R(KDP-Z) for almost all of Period 1 for this catchment. Any 
period for which the height of the melting layer prevents the calculation 
of specific attenuation over more than 50 % of a catchment is shaded red 
on the hyetograph for R(Dual-Pol) in Fig. 3. Note that additional checks 
in the processing chain for radar signals associated with solid precipi-
tation may also limit the calculation of specific attenuation, so this 
measure provides only a maximum possible percentage. The other 
example catchments are also affected by this to a degree mainly 
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determined by their mean LUE. 
Lossie at Sheriffmills (Fig. 3b). A catchment very close to the radar 

(14 km) and having a low LUE (0.5 km). Modelled river flow using the 
R(Dual-Pol) QPE displays a very large overall positive bias (+94 %), 
which is far more pronounced in Period 1 (+164 % bias) than Period 2 
(+30 % bias), and arises from catchment-average R(Dual-Pol) precipi-
tation totals that are a very large compared to raingauge precipitation 
totals (40 % larger for the full period or 120 % larger for Period 1). 
Nevertheless, even in Period 1, modelled flows using R(Dual-Pol) data 
agree reasonably well with the observed flows in terms of relative 
magnitude and timing of the flood peaks. Similar behaviour (biases in 
excess of 90 %) is found for all three catchments closest to NXPol. This 
was traced to a previously undiagnosed antenna elevation pointing error 
in Period 1, leading to overcorrection of beam blockage for this period, 
especially when using beam blockage corrections derived using data 
from Period 2 (Neely et al., 2021). This effect was strongest close to the 
radar where the LUE derivation incorporated a greater number of radar 
voxels from lower elevations which suffered more from the 
overcorrection. 

Deveron at Avochie (Fig. 3c). A catchment fairly close (51 km) to the 
radar and with a relatively low mean LUE (2.3 km), producing reason-
able modelled river flows. The highest peak in the observed flow data, 
reaching 127 m3/s at 19:30 15 June, is the most significant flood peak 
found during the study period at an example catchment: it is the only 
peak that approaches the median annual flood (129 m3/s for this 
catchment, see Table 2). This peak is underestimated in both the 
modelled flow using the raingauge QPE as input (peak of 53 m3/s) and 
the R(Dual-Pol) QPE as input (peak 41 m3/s). The difference appears to 
reflect the different catchment-average total precipitation recorded over 
the preceding 48 h (51 mm for raingauge and 38 mm for R(Dual-Pol)). 
Over the whole study period however, the total precipitation recorded 
for this catchment is quite similar for the two QPEs: 424 mm for rain-
gauge and 409 mm for R(Dual-Pol). 

North Esk (Tayside) at Inveriscandye (Fig. 3d). A catchment in the 
south of the radar area that is both a long distance (94 km) from NXPol 
and on the far side of the Cairngorm mountain range. Its mean LUE of 
6.7 km is the highest of all the catchments included in this study. 
Because of this, the radar beam overshoots almost all precipitation in 
this catchment (total catchment-average R(Dual-Pol) precipitation is 
just 55 mm) resulting in a large negative bias in the modelled flow 
(-84 %). Similar behaviour is seen for all catchments with LUE exceeding 
4 km. 

7.1. Influence of LUE and range of the radar observations on performance 

Fig. 4a-c show scatter plots of R2 Efficiency, correlation coefficient, 
and bias for modelled river flow using either R(Dual-Pol) or raingauge 

QPE as input against each catchment’s mean LUE. The plots for corre-
lation coefficient and bias (Fig. 4b,c) also show the linear least-squares 
regression line and associated coefficient of determination, denoted by ρ 
in this context. For R(Dual-Pol) QPE, the systematic reductions in cor-
relation coefficient and bias is particularly striking and is reflected by 
strong coefficients of determination for the least squares regression 
lines: 0.38 and 0.63 for the correlation coefficient and bias, respectively. 
Similarly strong fits (in the ranges 0.38 to 0.61 and 0.51 to 0.63 for the 
correlation coefficient and bias, respectively) are found for all NXPol 
QPEs. The lack of similar behaviour in modelled river flow using rain-
gauge QPE (hollow grey circles in Fig. 4b,c) shows that the trends with R 
(Dual-Pol) are not associated with the characteristics of the hydrological 
catchments themselves. The trend for R2 Efficiency is more complicated, 
which instead tends to have largest values at LUEs of around 2 km for 
which biases of around zero are typical. 

The existence of distant catchments that perform comparatively well 
with NXPol precipitation, such as the Lossie at Sheriffmills (Fig. 3b), 
suggests that it is LUE rather than range that is chiefly responsible for the 
deterioration of performance shown in Fig. 4a-c. Nevertheless, the LUE 
is correlated with range having a value of r = 0.68. Catchments at closer 
range will benefit from lower minimum detectable signal, a smaller areal 
resolution, and suffer less from partial beam filling. Weaker values of the 
coefficient of determination for the regression lines (0.084 for r and 0.56 
for bias using R(Dual-Pol)) obtained when mean range is used as the 
explanatory variable, rather than mean LUE, suggest it is LUE that has 
the strongest influence. 

7.2. Comparing different QPEs for Period 1 and Period 2 

The boxplots of Fig. 5a summarise the overall performance of all 
QPEs, as assessed by statistics calculated on the modelled river flows and 
using data from both Period 1 and Period 2. Statistics are only shown for 
those 38 catchments with an LUE of less than 3 km in altitude on average 
across the catchment. Similar trends are repeated if all 57 catchments 
are included (not shown) - albeit with an overall reduction in R2 Effi-
ciency, correlation, and bias for all NXPol QPEs - due to the inclusion of 
poorly performing catchments whose high mean LUE would flag them as 
unsuitable. 

The raingauge QPE tends to produce the best modelled river flows 
according to the R2 Efficiency metric. Some of this improvement could 
be due to the G2G hydrological model having been calibrated using 
raingauge QPE as input. But this seems unlikely to account for a large 
proportion of the difference, especially given the reduced role of cali-
bration for an area-wide distributed model like G2G compared to, for 
example, a lumped hydrological model with a catchment-specific cali-
bration. The R2 Efficiency also indicates a general improvement in 
performance with either increased processing complexity for single 

Fig. 2. Performance of G2G modelled river flows using the R(Dual-Pol) QPE. Each catchment is coloured according to the performance metric used: R2 Efficiency, 
correlation coefficient (r), or percentage bias. An R2 Efficiency of less than zero is set to zero for clarity. 
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polarisation QPEs (R(Z) to R(ZC) in Table 1), or using the dual- 
polarisation estimates (R(Ah) to R(Dual-Pol) in Table 1), albeit with 
the R(ZC) QPE able to match the performance of some dual-polarisation 
estimates. Correlation, KGE’[sqrt] and bias generally repeat the same 
trends towards improvement found for R2 Efficiency, but with some 
exceptions. The strongest increase in performance is seen for the bias. 
This suggests that the improved bias is the factor responsible for a larger 
part of the improvement seen in R2 Efficiency (which can be viewed as a 
combination of correlation, bias, and the ratio of standard deviations 
(Gupta et al., 2009)). It also suggests that while the application of a bias 
correction to NXPol QPEs should be expected to increase the overall 

R2 Efficiency for their associated modelled river flows, it may reduce the 
further improvements gained by processing complexity or dual- 
polarisation. 

The boxplots of Fig. 5b,c highlight the different trends in perfor-
mance found using the radar QPEs for Period 1 (March to April) and 
Period 2 (June to August). There is also a difference across the two pe-
riods in the performance of modelled river flow using raingauge or 
R(C-band) QPE as input to G2G. Part of the difference for both radar and 
raingauge inputs may be due to the increased complexity of modelling 
snow accumulation and melt within the G2G model. One way to quan-
tify this is by comparing G2G modelled flows (with raingauge QPE as 

Fig. 3. Time-series displays for the example 
catchments, each containing graphs of river 
flow along with catchment-average precipi-
tation - from raingauges and R(Dual-Pol) 
radar - and air temperature. Graph 1. 
Observed (black) and modelled (green: R 
(Dual-Pol), cyan: raingauge) river flow. The 
G2G catchment area, mean LUE and mean 
distance from NXPol is given below the 
catchment (river and station) name. Grey 
shading indicates a period of downtime for 
NXPol, infilled using R(C-band) precipita-
tion). Graph 2. Raingauge precipitation. 
Graph 3. R(Dual-Pol) precipitation. Red 
markers indicate when the bottom of the 
melting layer is lower than the LUE over 
greater than 50 % of the catchment. Graph 
4. Air temperature at screen height (1.5 m). 
Precipitation at temperatures below 0.75 ◦C 
(highlighted as a dashed horizontal line) is 
treated as snowfall in G2G.   
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input) calculated either using the G2G Snow Hydrology module (as is 
standard), or excluding it (when all precipitation is treated as rainfall). 
On average across all catchments, river flows calculated using these two 
model setups differ by more than 20 % for 31 % of days in Period 1, 
compared to almost no differences of this size (0.1 % of days) for 
Period 2. Additionally, the short time periods over which river flows 
have been modelled can make results sensitive to the observed weather 
conditions. 

For the NXPol QPEs, the clearest difference between the two periods 
is the lack of improvement produced by the increasing use of dual- 
polarisation in Period 1, compared to the strong improvements found 
for Period 2. This is attributed to the considerably lower height of the 
melting layer in Period 1, which limits the occurrence of the liquid 
precipitation conditions assumed in the use of estimators based on 
specific attenuation, variations of which are the main difference be-
tween the dual-polarisation methodologies. Fig. 6 shows the distribution 
of the highest altitude for which the specific attenuation is calculated, 
which is 250 m below an estimated 0 ◦C height. In Period 1 this averages 
a median of just 793 m, compared to 1993 m in Period 2, and leads to at 
least 35 % of the radar domain never having estimates based on specific 
attenuation available in the first period (compared to less than 10 % in 
the second period). The trend for improvement produced by increasing 
processing complexity and use of dual-polarisation for Period 2 is 
consistent with that found by Neely et al. (2021; Fig. 5 therein) where 

the same QPEs were assessed against raingauge data. However, use of 
hydrological model simulations of river flow against observations for 
assessment of the different QPEs, when employed as alternative model 
inputs, produces a much stronger contrast in performance between 
methods particularly when considering the correlation and bias. This 
results from the greater spatial coverage of the hydrological catchments 
when compared to raingauges, which can be subject to localised error 
structures. This furnishes further evidence of the benefit of using 
catchment-scale river flow data alongside direct raingauge data com-
parisons for assessing radar QPE. The increased correlation of the R(Ah) 
and R(Ah,thr) methods for multiple catchments when compared to 
R(ZC) in Period 2 is further evidence that estimators based on specific 
attenuation are impacted to a lesser extent by variability in the drop-size 
distribution of the precipitation than conventional ones employing 
reflectivity (Diederich et al., 2015b; Chen et al., 2021). 

7.3. Mapping best performing QPEs 

Fig. 7 maps the best performing NXPol QPE - as determined by either 
R2 Efficiency, correlation or bias on modelled river flow - for the full 
study period. The lowest absolute values of bias are almost exclusively 
found for R(KDP-Z) or R(Dual-Pol). For a number of catchments, these 
two QPEs give identical performances. In general, even when not exactly 
equal, their performance is very similar: 90 % of catchments have an 

Table 2 
Catchment details and analysis statistics for the four example catchments.   

Strathy at Strathy Bridge Lossie at Sheriffmills Deveron at Avochie North Esk at Inveriscandye 

Catchment Details 
National River Flow Archive ID* 96003 7003 9001 – 
Catchment Area (from G2G), km2 120 214 445 316 
Mean NXPol LUE, km 2.1 0.5 2.3 6.7 
Mean distance from NXPol, km 92 14 51 94 
Mean (min, max) elevation, m† 165 (36, 312) 185 (25, 423) 329 (107, 680) 458 (46, 836) 
Median annual flood, m3/s* 50 44 129 – 
Max observed flow in study period, m3/s 27 23 127 105 
Split Period Analysis 
Ah potential availability, % Period 1 (Period 2) 0 (39) 70 (100) 1 (35) 0 (0) 
% of flow affected by snow Period 1 (Period 2) 7 (0) 1 (0) 19 (0) 49 (0) 
Full Period Analysis (excluding May) 
Total precipitation, mm Dual-Pol (RG) 321 (373) 527 (377) 409 (424) 55 (387) 
R2 Efficiency R(Dual-Pol) input (RG input) 0.43 (0.60) − 3.52 (0.72) 0.52 (0.68) − 0.41 (0.76) 
r R(Dual-Pol) input (RG input) 0.68 (0.84) 0.42 (0.86) 0.76 (0.88) 0.17 (0.90) 
% bias R(Dual-Pol) input (RG input) − 14 (1) 94 (8) − 21 (− 18) − 84 (− 15) 

*Source: National River Flow Archive (NRFA), https://nrfa.ceh.ac.uk. 
†Calculated from 1 km average elevation grid used in G2G Snow Hydrology module. 

Fig. 4. Scatter plots showing (a) R2 Efficiency, (b) correlation coefficient, r, and (c) percentage bias in modelled river flow using R(Dual-Pol) (green circles) or 
raingauge (hollow grey circles) QPEs as input. Values of R2 Efficiency less than zero are set to zero for clarity. Straight lines in (b) and (c) indicate the linear least- 
squares regression line - for either R(Dual-Pol) (solid black line) or raingauge (dashed grey line) QPEs as input - with the associated coefficient of determination, ρ2, 
shown above the plot (that for raingauge QPE input is in brackets). 
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absolute difference in percentage bias between these QPEs which is 
smaller than 2 %. Their performances assessed by correlation or R2 Ef-
ficiency are also very similar. 

The typically lower absolute bias in R(KDP-Z) and R(Dual-Pol) feeds 
through into typically superior R2 Efficiency. However, when judged by 
correlation coefficient the picture is far more mixed: various dual- 
polarisation or non-dual-polarisation QPEs are found to give the best 
performance, especially for some of the catchments with lower LUE. 
When judged by median correlation coefficient for catchments with LUE 
below 3 km (Fig. 5a), R(Z+DTM+QC+At), R(Ah), R(Ah,thr), and R(Z 
(Ah)) QPEs all perform better than R(KDP-Z) and R(Dual-Pol). These 
results broadly reflect those shown in Fig. 7 of Neely et al. (2021) where 
the various NXPol QPEs were assessed against raingauge measurements. 

Fig. 8 maps in green the catchments for which the performance of 
R(Dual-Pol) is better than R(C-band). The R(Dual-Pol) QPE has a higher 

R2 Efficiency than R(C-band) for 23 catchments that tend to be either near 
the radar, or towards the south-east and north. This is expected as LUE for 
the NXPol radar is low for these locations while, due the distance to the 
nearest C-band radar and the intervening topography, observations 
contributing to the C-band QPEs will be from higher altitudes. The three 
catchments close to the radar and suffering high positive bias in 
R(Dual-Pol) as a result of the antenna elevation pointing error in Period 1 
are an exception. A similar pattern of best-performing catchments is also 
seen for the bias. This overall behaviour is the result of averaging the 
differing behaviours in Periods 1 and 2, as shown in Fig. 5. In Period 1 the 
benefit of using the dual-polarisation variables in the NXPol 
QPE are limited, and the R2 Efficiency of R(Dual-Pol) is only better than 
that of R(C-band) for 10 catchments. In contrast, during Period 2, 
R(Dual-Pol) has better R2 Efficiency than that of R(C-band) for 30 
catchments as the increased use of dual-polarisation variables for 

Fig. 5. Boxplots summarising the performance of modelled river flow for the 38 catchments with a mean LUE less than 3 km, separately for the whole study period 
(left), Period 1 (March to April, centre) and Period 2 (June to August, right) for all precipitation inputs. The coloured box displays the interquartile range, the median 
is shown as the horizontal black line therein, and the typical range of the statistic is shown as black dashed lines extending to a maximum of 1.5 times the inter-
quartile range with outliers beyond this range shown as hollow circles. 

Fig. 6. Distribution of the estimated highest LUE for which the specific attenuation is calculated (250 m below the estimated 0 ◦C height) for Period 1 (shaded grey) 
and Period 2 (shaded pink). The distribution was estimated using the air temperature at the NXPol and a lapse rate of 6 ◦C/km. 
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R(Dual-Pol) during this period improves its performance, while for 
R(C-band) many of the catchments suffer from strong positive bias (which 
actually tends to become increasingly positive for those sites nearest 
NXPol and correspondingly furthest from the C-band radars) and conse-
quently it suffers a poorer R2 Efficiency. As assessed by correlation co-
efficient, the performance of R(Dual-Pol) is only better than that of 
R(C-band) for 15 of the catchments in the study area. However, this 
number would be increased to 19 for either R(Ah) or R(Ah,thr). Also recall 
that NXPol QPEs are experimental prototypes not benefitting from the full 
complexity of estimation measures featuring in the R(C-band) processing 
chain. These results are consistent with those presented in Fig. 7 of Neely 
et al. (2021) comparing R(Dual-Pol) and R(C-band) using the raingauge 
network data for assessment rather than river flow data. 

8. Discussion and concluding remarks 

The performance of a set of X-band QPEs produced using data from 
the NXPol radar - having increasingly complex processing chains and use 
of dual-polarisation (summarised in Table 1) - were assessed in a hy-
drological context over northern Scotland. Here, mountainous terrain 
and low melting layer heights make radar-based QPE challenging. This 
hydrological assessment used the QPEs as input to a distributed hydro-
logical model, G2G, and compared the resulting set of modelled river 
flows to observations. The assessment strategy considers how QPEs 
perform once integrated over space and time, thereby providing addi-
tional insights to the meteorological assessment against point raingauge 
measurements reported by Neely et al. (2021). 

All NXPol QPEs assessed showed a clear tendency to underestimate 
the precipitation for catchments with high mean LUE. The best perfor-
mance, as assessed by the R2 Efficiency of the modelled river flows, was 
generally found for the R(Dual-Pol) and R(KDP-Z) QPEs, while the flows 
modelled using R(Ah) and R(Ah,thr) QPEs often had the best correlation 
coefficient. There were clear differences between the two study periods 
(March to April and June to August 2016) which were caused by the 
lower melting layer and consequently reduced use of dual-polarisation 
capability in the first period. A longer study period would allow 
greater assessment of seasonal effects and reduce the impact of indi-
vidual weather events. 

The strong dependence on LUE of the performance of river flow 
modelling using NXPol QPEs as input highlights the difficulty of radar 
precipitation estimation in mountainous environments. Here, the high 
elevation scans needed to circumvent blockages leads to significant 
overshooting of the falling precipitation: resulting in low correlation and 
negative bias of modelled river flows. This effect becomes most apparent 

when the mean LUE results in utilising radar observations of altitude 
~3 km and above. The assessment also highlights that the Met Office 
C-band radar network suffers from similar issues in this region, but with 
the results inverted compared to the NXPol radar as a result of the 
different radar locations. This is despite the more complex processing 
used in the network radar to attempt to overcome this challenge. 
Clearly, one solution is to incorporate additional radars into the 
observing network in these problematic locations, sited such that 
observations for critical catchments may be made at altitudes less than 
3 km. Where this is not feasible, using heavily processed low-elevation 
scans are likely to be more effective than processed higher-elevation 
scans. Further improvements to the LUE methodology used herein are 
required to allow a dynamic use of lower-altitude scan data where 
possible. 

Comparing the assessment results obtained for Period 1 (March to 
April 2016) with those for Period 2 (July to August 2016), it is seen that 
the dual-polarisation processing (attenuation correction and specific 
attenuation based precipitation estimators) has more impact on river 
flow modelling performance during Period 2. This is a consequence of 
the requirement to have a continuous path within liquid precipitation to 
allow more accurate estimation of specific attenuation. Meeting this 
requirement is often not possible when the freezing height is low and, 
particularly, when higher elevation-angle scans are needed. Additional 
processing is required to obtain further benefits (beyond filtering ca-
pabilities) from dual-polarisation radars in lower temperature condi-
tions. The expectation is that using solid-phase precipitation estimators 
based on specific differential phase and reflectivity would improve the 
results in cold conditions (Bukovčić et al., 2020). Additionally, incor-
poration of vertical profile corrections and conventional reflectivity 
estimators better suited to ice-phase hydrometeors may also lead to 
performance improvements in these conditions. The hydrological 
simulation approach to assessment used here would be better placed to 
identify these benefits than a more conventional comparison to data 
from raingauges as these are less accurate when measuring solid pre-
cipitation (Savina et al., 2012). This should be explored in future work. 

NXPol QPEs have also been compared to the rain-rate estimates 
based on observations made by the C-band radar network operated by 
the UK Met Office. The network radars employ a variety of processing 
steps not included in the NXPol processing chain. For example, adding 
an adjustment for mean field bias using raingauge data could be trialled 
in NXPol. Even so, most NXPol QPEs tended to give higher R2 Efficiency 
in modelled river flows than using R(C-band) QPE for catchments near 
the radar, towards the south-east and the far north of the study area. 

The relationship between radar reflectivity and rain-rate used in this 

Fig. 7. Catchments are coloured according to the NXPol QPE that produces the best performance in the modelled river flow when assessed using either R2 Efficiency, 
correlation or bias. Catchments for which R(Dual-Pol) and R(KDP-Z) perform equally are shown with light-green/dark-green hatching. For bias, the lowest absolute 
bias is best. 
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study was the Marshall-Palmer relationship (Harrison et al., 2012; 
Marshall and Palmer, 1948). However, the exact physical relationship 
between reflectivity and precipitation intensity depends on the drop-size 
distribution, which in turn depends on type of precipitation, location 
and season. A preliminary investigation was carried out using data from 
the Disdrometer Verification Network, DiVeN (Pickering et al., 2019), to 
measure the drop-size distribution at a location within the coverage of 
NXPol during the RAiNS campaign (Cairngorm, 2017 to 2019). This 
suggested that several events were dominated by a large number of 
smaller drops where the Marshall-Palmer relationship would underes-
timate rainfall intensity. An initial investigation considering these 
events, using a bulk average relationship, was tested. It was found to 
result in large positive biases in modelled river flows for catchments 
with low LUE, without improving the trend towards negative biases for 
catchments with high LUE. The conclusion drawn was that a dynamic 
approach is required, with the Z-R relationship chosen as a function of 
the observed microphysics, either on a scan-by-scan or voxel-by-voxel 
basis. Implementation of such a scheme requires further investigation 
to understand the relationship between drop-size distribution, weather 
conditions and dual-polarisation radar signatures under UK conditions 
(Cocks et al., 2019; Thurai et al., 2017). 

Further improvements should also consider how the LUE concept 
introduced in Neely et al. (2021) can be improved upon to preferentially 
use lower elevation observations where available. This could include 
using blockage-corrected lower elevations where data exist and higher 
elevations where there are no echoes available to correct. Also, intro-
ducing weighting into the Cartesian gridding scheme to give a higher 
weight to lower elevation observations within the target grid box where 
there is a variation in elevations available. 

Assessing radar-based QPEs by their effect on modelled river flows 
(using each QPE as an alternative input to a hydrological model) has 
been found to be a very useful and independent addition to the assess-
ment against point raingauge measurements performed by Neely et al. 
(2021). The approach facilitates assessment of precipitation over entire 
catchment areas, thus circumventing the potential sensitivity to local 
radar artefacts that can affect raingauge-based assessments, the mea-
surement limitations of raingauges during solid phase precipitation, and 
also a possible lack of representativity for hard to service locations such 
as mountain tops. This approach also allows direct assessment of 
whether the potential benefits of a QPE procedure is carried forward to 
its quantitative use in hydrological modelling and therefore to end- 
users. Additionally, the number of suitable catchments in the study 
area (57) was comparable to the number (64) of raingauges used by 
Neely et al. (2021). Using a hydrological model to assess QPEs does add 
complexity and an additional source of uncertainty in the assessment. 

However, the accuracy of the QPE appears to be a dominant factor 
affecting river flow modelling performance. One way to investigate such 
sensitivity further would be to incorporate an additional hydrological 
model into the assessment framework, such as a catchment-calibrated 
lumped rainfall-runoff model. Nevertheless, the hydrological model-
ling assessment framework presented here has given additional insights 
into the space–time performance of radar-based QPEs beyond the 
traditional point-based comparison with raingauge data, and can be 
easily reapplied to test future QPE developments. Such assessment 
frameworks have wide applicability and the insights gained - on the 
performance of dual-polarisation methods and on identifying priority 
areas for future development - are of general relevance to those devel-
oping radar-based QPEs. 
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CEDA Archive (Bennett, 2019). The R(C-band) QPE data used in this 
study are identical, up to minor differences due to missing data, to the 1 
km resolution UK Composite Rainfall product available from the CEDA 
Archive (Met Office, 2003). 

The river flow and raingauge data were provided by SEPA. For po-
tential evaporation, 40 km gridded monthly values were used - here 
taken as the monthly average of MORECS PE (Hough and Jones, 1997; 
Thompson et al., 1981) over the period 1981 to 2010 - available from the 
UK Met Office. Air temperature data were from the Post Processing of 
the UK Met Office weather prediction model (UKPP) (Moseley, 2011). 

Fig. 8. Catchments are coloured according to whether the R(Dual-Pol) (shaded green) or R(C-band) (shaded grey) QPE produces the best performance in the 
modelled river flow when assessed using either R2 Efficiency, correlation or bias. For bias, the lowest absolute bias is best. 
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Bukovčić, P., Rhyzkov, A., Zrnić, D., 2020. Polarimetric relations for snow 
estimation—radar verification. J. Appl. Meteor. Climatol. 59, 991–1009. https://doi. 
org/10.1175/JAMC-D-19-0140.1. 
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