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Abstract  

Hydrological response of an urban catchment to storm events is determined by a number of 

factors including the degree of urbanisation and distribution and connectivity of urbanised 

surfaces. Therefore the ability of spatially-averaged catchment descriptors to characterise 

storm response is limited. Landscape metrics, widely used in ecology to quantify landscape 

structure, are employed to quantify urban land-cover patterns across a rural-urban gradient of 

catchments and attribute hydrological response. Attribution of all response metrics response, 

except peak flow, is improved by combining lumped catchment descriptors with spatially-

explicit landscape metrics. Those representing connectedness and shape of suburban and 

natural greenspace improve characterisation of percentage runoff and storm runoff. 

Connectivity and location of urban surfaces are more important than impervious area alone for 

attribution of timing, validating findings from distributed hydrological modelling studies. 

Findings suggest potential improvements in attribution of storm runoff in ungauged urban 

catchments by applying landscape metrics. 
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1 Introduction  

The process of urbanisation involves hydrological and hydraulic changes to catchment rainfall-

runoff relationships through the progressive loss of pervious surfaces and natural drainage 

pathways and their replacement with impervious surfaces and artificial drainage. Such changes 

decrease infiltration and localised soil storage, thereby increasing runoff volume (Yang & 

Zhang, 2011). Combined with more rapid conveyance of runoff as a result of artificial drainage 

(Burns et al., 2012) this results in a more flashy response with earlier flood peaks (Graf, 1977), 

reduced baseflow (Braud et al., 2013) overall increased peak flow (Ogden et al., 2011; Miller et 

al. 2014) and increased downstream fluvial flooding (Fletcher et al., 2013).  

Catchment impervious area is widely recognised and used as an indicator for characterising the 

impacts of urbanisation on hydrology (Lee & Heaney, 2004; Dams et al., 2013). It is 

conceptually easy to understand (Lim, 2016) but simplifies the complex urban processes of 

hydrological response resulting from spatial elements of land cover distribution and 

connectivity (Shuster et al., 2005; Redfern et al., 2016). Empirical studies are generally 

constrained to characterising urbanisation with lumped catchment values such as total 

impervious area (Sillanpää and Koivusalo, 2015) or urban extent (Putro et al., 2016) and 

disregard spatial variability. Likewise, most statistical flood estimation methods rely on lumped 

catchment representations that simplify spatial properties into a catchment wide 

approximation of that system (e.g. Flood Estimation Handbook: IH, 1999; Kjeldsen, 2010). Yet 

high-resolution monitoring technologies and distributed hydrological models have facilitated 

research beyond the effects of catchment imperviousness alone, revealing the importance of 

considering both the connectivity of impervious areas (Roy & Shuster, 2009; Ebrahimian et al., 

2016) and the spatial distribution of these surfaces (Gironás et al. 2009; Zhou et al., 2014; 

Zhang & Shuster, 2014; Du et al., 2015). Such methods certainly benefit from using spatial 
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analysis methods to characterise land cover distribution in order to estimate rainfall-response 

characteristics (L’homme et al. 2004; Rodriguez et al. 2005; Gironás et al. 2008). Rodriguez et 

al. (2003) note morphology-based methods potential for evaluating urbanisation impacts. 

Miller & Brewer (2018) have shown the potential for improved characterisation of storm 

runoff for attribution methods that rely on lumped catchment representations. 

The role of spatial metrics for analysing and modelling urban land use change has long been an 

area of active research (Herold et al., 2005). Landscape metrics were developed as a means to 

characterise the composition and spatial configuration of patches of land cover typologies to 

link to ecological processes (Turner et al., 2001) and thus offer potential improvements over 

lumped catchment descriptors. These are calculated using software that can process spatial 

data and derive variable metrics for characterising the distribution, shape and connectivity of 

land cover. Ecologists have long applied spatially explicit landscape metrics (LMs) to study 

ecosystem dynamics (Brady et al., 1979) and they are increasingly being used in hydrological 

studies (Schröder, 2006; Yuan et al., 2015) where combining established landscape metrics 

alongside hydrologically relevant metrics is an emerging area of investigation for 

characterisation of catchment properties affecting hydrological response (Van Nieuwenhuyse 

et al,. 2011; Miller & Brewer, 2018; Oudin et al., 2018).  

In this study we aim to evaluate the performance of lumped urban catchment descriptors and 

spatially-explicit landscape metrics for explaining inter-catchment variation in storm runoff in 

small urbanised catchments. To achieve this, there are a number of related objectives: i) to 

quantify differences in inter-catchment rainfall-runoff behaviour across a range of urbanised 

catchments; ii) to characterise catchment properties using a range of catchment descriptors 

and landscape metrics; and iii) to identify the relative performance of catchment descriptors 

and landscape metrics for explaining rainfall-runoff response. The findings will be used to 

assess what landscape metrics can tell us regarding the role that spatial layout of urban 
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surfaces has on storm runoff response and their potential role in statistical procedures for 

flood frequency estimation and other lumped catchment hydrological applications.   

2 Method  

2.1 Study area and hydrological monitoring  

FIGURE 1 

The study area focuses on two towns of similar climate and geology in the south of the UK 

(Figure 1) located within the River Thames catchment (Figure 1, inset). Both towns have an 

Environment Agency (EA) gauging station and rain gauge recording at a 15 min resolution. We 

additionally monitored flow in 16 locations that represent catchments of varying urbanisation. 

Flow and rainfall was measured between 2011 and 2016: flow at a 5 min resolution using in-

situ ultrasonic instruments, rainfall at a 15 min resolution across eight locations spread over 

the two towns using tipping bucket raingauges. Miller & Hess (2017) provide a detailed 

description of equipment and data processing. The total dataset of 18 sites were separated 

into calibration (11) and validation (7) catchments (Figure 1) - whereby storm responses across 

the grouped calibration sites were not observed to be directly impacted or materially similar to 

response observed at other calibration sites. 

Both Swindon (population 210,000) and Bracknell (population 77,000) catchments are rapidly 

urbanising urban centres typical of UK post-World War II development and of progressive peri-

urbanisation. In addition to urbanisation, hydrology is affected by hydraulic infrastructure 

including sewage treatment works (STW) outfalls (Figure 1) and for Bracknell local retention 

ponds.  

2.2 Storm event data  

The variable pattern of rainfall-runoff response across the catchments was quantified using 

storm event data captured and was characterised by a suitable range of hydrological metrics 
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(Table 1) using the methods outlined by Miller & Hess (2017). This involved first isolating storm 

events using rainfall depth and intensity thresholds. An automated baseflow separation 

method was used to isolate the surface runoff hydrograph, based on identifying the starting 

point of the hydrograph rising limb and applying a linear interpolation to the end of stormflow. 

Finally, visual analysis was undertaken to filter out erroneous events and ensure only single-

peak events were selected.  

TABLE 1 

2.3 Catchment descriptors and landscape metrics  

A number of catchment descriptors and landscape metrics were selected to provide 

characterisation of catchment properties (Table 2). Both catchment descriptors and landscape 

metrics were based on 50 m resolution mapping of UK land cover. Suburban and Urban classes 

were taken from the UK Land Cover Map updated for 2015 (LCM2015), following Morton et al. 

(2011), and represent the varying intensity of urban development – Suburban areas having a 

mix of housing and greenspace, while Urban is dominated by continuous development and 

minor greenspace. Likewise, the combined Grassland/woodland/arable class is a collation of 

these broad classes from LCM2015 to represent the non-urban terrestrial areas. Using data 

and methods outlined by Miller and Brewer (2018), a further class of Natural Greenspace was 

introduced that differentiated from areas of urban greenspace that can be highly compacted. 

The Water class mapped all ponds/wetlands/lakes/reservoirs using high-resolution mapping of 

elevation and water, downscaled to 50 m.  

TABLE 2 

The eight catchment descriptors selected are those used for estimating floods in ungauged 

catchments in the UK (IH, 1999; Kjeldsen, 2007) and provide characterisation of catchment 

geometry, climate, geology, soil hydrology, and urban extent (Table 2). The 11 selected 
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landscape metrics were identified by Miller & Brewer (2018) as uncorrelated and highly 

descriptive of urban spatial form and function with regard to catchment hydrological function. 

These include the proximity index (PX), which indexes the hydrological distance of all 

Urban/Suburban patches to the outlet, alongside the one landscape-level metric (CONTAG) 

and nine other metrics based on four class-level landscape metrics (LPI, CONTIG, CLUMPY, 

COHESION) (Table 2).  

The majority of landscape metrics were derived using the Fragstats software package 

(McGarigal and Marks, 1994) which is one of a number of tools available for quantifying 

landscape structure through geo-spatial analysis of land cover (Frazier & Kedron, 2017). 

Fragstats was selected as it’s a relatively accessible tool that works with raster data and 

contains all required metrics (McGarigal et al. 2009) and has demonstrated performance in 

urban areas (Grafius et al. 2018). Its inability to deal with non-Euclidean distances (e.g. flow 

length pathways), required using ArcGIS to quanitfy PX using methods outlined by Miller & 

Brewer (2018). 

2.4 Calibration and validation of linear models  

The approach to characterising hydrological response using the various landscape metrics and 

catchment descriptors follows a standard multivariate linear model optimization method as 

employed in similar studies (e.g. Oudin et al. 2018) and UK flood estimation methods (IH, 

1999).  A log-linear regression model (Kjeldsen, 2010) was best suited, as it allowed the 

attribution of hydrological data to a number of catchment variables. 

Using data from the 11 calibration catchments (Figure 1) the best performing model variables 

were identified using ‘leaps’ regression subset selection (Lumley, 2017). Leaps identifies the 

best combination of variables for performing a linear regression of the observed response 

metric, using an efficient ‘branch-and-bound’ algorithm that systematically searches for the 
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optimal solution. This algorithm uses a systematic enumeration of solutions that explore 

branches of a tree that represent possible subsets of the solution, each branch being checked 

against bounds of the optimal solution. Given the relatively small subset of calibration 

catchments and variables, the adjusted r-squared (R2adj) performance criterion, with an 

associated weighting based on data frequency (events captured), was used to account for the 

number of predictor variables in the model relative to the number of data points. A further 

check for consistency, and to ensure no over-fitting, was undertaken by extracting the Akaike 

information criterion (AIC) scores (Akaike, 1987) for model variants.  

Leaps was bounded to selecting the best three subsets of variables at each level of complexity, 

from one to four variables, in order to identify patterns in model complexity and between 

catchment descriptors and landscape metrics selected. This first stage involved using only 

catchment descriptors as a baseline for comparing model performance. The second stage 

added landscape metrics to see if there was improved performance when landscape metrics 

are additionally considered. This approach also facilitated identification of which catchment 

descriptors were supplemented. The model with the highest R2adj and lowest AIC was then 

taken forward to fit model parameters.  

The second stage of model development involved fitting parameters for the optimal 

combination of catchment descriptor or landscape metric variables identified for each 

response metric across the 11 calibration catchments. We employed the weighted least 

squares regression method (Ruppert & Wand, 1994), applying a weighting factor based on 

number of events captured for each site, as this was most suitable given the limited number of 

calibration catchments (11) and variation in monitoring duration between sites (Figure 1). 

Hydrological metric data normality across the 11 sites was tested using the Shapiro-Wilk 

statistic test and where non-normal (p < 0.05), data were transformed using the natural 

logarithm. For cases requiring natural log transformation and to maximise performance, 
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optimal transformation of variables were derived using the following transformations: none, 

logarithmic, inverse (1000/x), and power (cx). The optimal form of the variable transformation 

was subsequently used in the final linear model derived for each response metric.  

The independence of data among study sites was ensured by selecting only catchments with 

little or no physical relationship in the event hydrographs while multicollinearity of model 

variables was reduced by selecting only landscape metrics with little or no significant 

correlation. Linear model assumptions were further tested using model residuals to ensure 

that linear regressions conformed to the assumptions of linear regression (Faraway, 2004). The 

fitted models were subsequently tested on the seven validation catchments (Figure 1) to 

assess performance and to identify any outliers.  

3 Results  

3.1 Storm event data  

Table 3 details the mean values for all hydrological metrics across the 18 selected catchments 

for the events captured during the monitoring period. The large variability in size of 

catchments selected (0.27 km2 – 82.5km2) means there is a wide range of all non-normalized 

metric values. Importantly, for the analysis that follows, the data indicate a wide range of 

hydrological responses have been captured across the sites, with a balanced proportion of 

events between the calibration (438) and validation (326) catchments.  

TABLE 3 

3.2 Catchment characterisation 

Land cover mapping of the five main classes is illustrated in Figure 2. Table 4 details the 

derived catchment descriptor and landscape metric values for each catchment. Urbanisation 

clearly varies across the selected catchments and reveals Swindon to have much higher Urban 

coverage across the town centre and peripheral industry/business parks than Bracknell, 
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reflected in generally higher URBEXT values (Table 4). Bracknell has a much higher number of 

urban water bodies (Water: Figure 2) compared to Swindon, resulting in lower catchment FARL 

values (Table 5). Likewise, mapping of Natural Greenspace (Figure 2) shows these areas are 

clearly present in varying degrees of extent and distribution across the 18 catchments/sub-

catchments. In general, individual patches of Natural Greenspace are not large but notable 

exceptions include the urban B2 and S8 and the rural B1 catchments, and EA_39052 which has 

a large patch located near to the catchment outlet. 

The majority of catchment descriptors and landscape metrics (Table 4) have high variability 

between the selected calibration/validation catchments (e.g. AREA, URBEXT, PX) while only 

two have little variation across catchments (SAAR, PROPWET) and three have general low 

variability but with outlier values (BFIHOST, CONTAG, CLUMPYSUB). Landscape metrics based on 

Suburban and Urban land-cover patches vary considerably compared to the catchment 

descriptor URBEXT. 

FIGURE 2 

TABLE 4 

3.3 Identifying model variables and testing models 

The best performing combination of catchment descriptors and landscape metrics for each 

metric were identified using the ‘regsubsets’ plot (Figure 3) in leaps (Lumley, 2017) and by 

comparing results with the associated AIC. The use of AIC scores provided a further means of 

differentiating between model selections and isolating the optimal model variables for both 

Qmax, PR and TLC, where more than one combination had resulted in the same recorded R2adj.  

For each hydrological metric the plot lists the catchment descriptors and landscape metrics 

along the x-axis and the y-axis indicates the model performance using R2adj to 2 decimal 

places. Four levels of model complexity are included (each separated by a horizontal dashed 
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line), from 1 variable (M1) to 4 variables (M4), and the plot showing the 3 best performing 

models for each level of complexity (and associated R2adj). The shaded rectangles indicate 

which variables are included in the given model and increasing shading indicates a higher 

R2adj. Those of similar value are ranked by subsequent decimal places. Figure 3a plots the 

results of only using the eight catchment descriptors, while Figure 3b plots the eight 

catchment descriptors alongside the 11 landscape metrics (separated by a vertical line).  

3.3.1 Model development and validation  

The fitted model equations for estimating each response metric from selected variables are 

detailed in Table 5, alongside their respective performance (R2adj). For those response metrics 

found to be non-normally distributed (Qmax, TP, TLPP) the fitted model equation takes the 

exponentiated form of the log-transformed model and includes the optimal variable 

transformations. The linear models on which all equations were based were found to meet 

linear model assumptions. Table 6 details the observed metric values for each validation site 

against values derived using the equations in Table 5, alongside comparative predictive 

performance (MSE) for equations using either calibration or validation data. These results 

reveal a number of insights: 

Qmax – Model fit is good and three catchment descriptors were shown to be significant, while 

the additional landscape metric CONTIGNAT is not. The fitted model performs well across the 

validation sites compared to calibration with no tendency to over- or under-predict Qmax, but 

certain sites are poorly predicted (B4, B6, S6).  

DR and PR – Both models show that a combination of landscape metrics and catchment 

descriptors provide the optimal model of good fit, with all selected variables being significant. 

The high significance of CONTIGNAT in both the DR and PR models highlights the potentially 

important role of urban greenspace for explaining the amount of runoff generated in the 
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urbanised catchments. Validation performance drops considerably as a result of significant 

over prediction of runoff volume in S4 and S8 and under predict in S6.  

θ – All selected variables are shown to be highly significant but the equation applied to 

validation data results in a large drop in predictive performance compared to calibration data 

mainly due to under prediction of flood duration in S6. There is also one result (S5) indicating a 

negative value.  

TP, TLPP and TLC – Fitted models show a similar pattern in variable selection and high model 

predictive performance but only DPLBAR is significant in all three calibrated models, while PX is 

significant in two. For both TP and TLPP the fitted model applied to the validation catchments 

resulted in increased predictive performance over calibration data reflecting generally good 

predictive ability across all sites.  For TLC the performance dropped considerably with poor 

predictive performance across most sites and one negative value (S5). 

TABLE 5 

TABLE 6 

4 Discussion  

4.1 Landscape metrics for characterising storm response  

4.1.1 Peak flow and runoff volume 

Landscape metrics were found to provide little added value for attribution of peak flows in 

urbanised catchments, peak flow being primarily a function of catchment area, and to a lesser 

degree, urbanised area. This suggests spatial layout is not an important factor which contrasts 

with observations from Miller and Brewer (2018) and modelling results from Mejía and Moglen 

(2009). While data was limited this warrants further investigation as there is considerable 

interest in using spatial planning of green infrastructure within a catchment to specifically 

reduce flood peaks (Jiang et al., 2018).  
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Variable selection and fitting for hydrograph metrics of runoff volume - PR and DR - showed 

the optimal combination included landscape metrics representing the connectedness and 

shape of Suburban and Natural Greenspace patches, alongside lumped catchment descriptors 

indicative of urban extent and climate or soils. This suggests that connectivity and extent of 

urbanised and pervious surfaces within an urbanised catchment are important variables 

driving the volume of runoff, and are mediated by location specific catchment hydrological 

functions.  This validates findings from other studies that have found that connectivity is an 

important determinant of runoff volume (Lee and Heaney, 2004; Krebs et al., 2013) and that 

pervious surfaces have notable effects on runoff volume (Ellis, 2010; Jarden et al., 2015). 

4.1.2 Runoff timing 

Combining landscape metrics representing the connectivity and location of urbanised surfaces 

alongside catchment descriptors greatly improved the attribution of runoff timing. Flood 

duration (θ) was particularly well characterised by a combination of information on catchment 

length and connectivity and the hydrological location of the dominant urbanised surface 

classes within catchments. This shows that the physical connectedness of the predominant 

suburban class is a driving factor, alongside flow path length, for explaining the flashiness of 

storm runoff for the selected catchments. A similar finding was reported by Mejía and Moglen 

(2010) when using a dedicated modelling framework. Time-to-peak (TP) was also well 

characterised using a combination of information on catchment length alongside layout and 

connectivity of urban patches (PX) and percentage of landscape comprised by the largest patch 

(LPI). The optimal combination provided good predictive ability across the range of catchment 

shapes, sizes and levels of urbanisation. Conversely, the lack of any catchment descriptor or 

landscape metric that might characterise attenuation of runoff (e.g. BFIHOST, FARL, 

CONTIGNAT) was surprising. Features such as retention ponds and greenspace are generally 

thought to slow down the speed of runoff and delay runoff peaks (Woods Ballard et al., 2015) 
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and are installed across Bracknell for this purpose. The inclusion of PROPWET suggests it’s 

important to consider general patterns of catchment wetness irrespective of urbanised 

surfaces that are generally considered to reduce this influence (Shuster et al., 2005). 

For both lag-time metrics (TLC, TLPP) runoff timing was primarily a function of flow path length 

(DPLBAR) and the location and connectivity of urban patches (PX). The higher model fit and 

significance of selected variables for TLC was expected as we would expect less inter-event 

variability in centroid-to-centroid values than peaks, which would be highly influenced by the 

spatial and temporal distribution of rainfall between events (IH, 1999). The tendency to under-

predict for Swindon sites, and over-predict across the larger Bracknell catchments  suggests 

that either, PROPWET does not enable this model to account for climate/soil differences, or, 

that the overall greater role of attenuation ponds in Bracknell is not being well characterised, 

with FARL not being a selected variable.  

4.1.3 Performance limitations in validation catchments 

Poor performance in application of calibrated models to validation sites was observed for Qmax, 

runoff volume (DR, PR), and two time-based metrics (θ, TLC). Overall the validation results are 

indicative that a much larger pool of variably urban catchments is required for calibration, to 

reduce such catchment specific variability, but also that more indicative features are required 

to be mapped and further characterised in more urban relevant landscape metrics. Observed 

performance limitations for the validation is put down to features including storm drainage 

and artificial transfer of water that have not been represented in the catchment descriptors or 

landscape metrics used in this study and which are likely catchment specific and not captured 

in the calibration catchments.  

Low predicted Qmax values for B6 and S6 could result from there being more runoff than 

expected due to STW outflows diverting significant storm water flows from other contributing 
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areas, in effect increasing the natural drainage catchment area. STW outfalls have been shown 

to have a range of impacts on both the quality and quantity of storm runoff (Braud et al., 2013; 

Hale et al., 2014; McGrane et al., 2016). Conversely the high predicted Qmax values for B4 is 

viewed as resulting from an underestimation of the attenuating effects of waterbodies, with 

FARL not included in fitted models. Studies have pointed to the important role that urban 

waterbodies play in reducing flood peaks (Meierdiercks et al., 2010) but there is evidence to 

suggest that the level of control measures in many urban catchments could be insufficient to 

influence hydrological response (Bell et al., 2016). This contradiction could be why FARL was 

not included in the fitted models as expected.  

Volume results from catchments S4 and S8 both suggest the catchments have features that act 

to significantly reduce the volume of runoff generated compare to what has been predicted. 

Both contain a large area of greenspace that is viewed as having significant surface water 

storage potential during floods. This underestimation of this areas effect is likely due to a lack 

of calibration sites with such a large relative area of Natural Greenspace. The role of such 

spaces is well covered in the literature (Gill et al., 2007) given their perceived role in acting like 

a sponge for runoff from urban areas (Jiang et al., 2018). However, given that they may not be 

as effective when soils are wet (Nied et al., 2016) the use of mean metric values across the 

monitoring period may be masking their potential contribution in drier periods.   

The poor prediction and underestimation of flood duration and centroid lag-time in S4, S5 and 

S6, and in particular the negative values for site S5, suggests the calibrated model was not 

suitable for these sites. The model formulae for both (Table 5) suggest an overestimation of PX 

effects on reducing response times. The negative value for S5 is further suggestive that the 

model was not able to deal with a catchment so heavily dominated by large-scale storm 

drainage and this with such short response times relative to its size. The wider literature 
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suggest form and function of storm drainage networks can accelerate runoff and increase peak 

flows (Meierdiercks et al., 2010; Ogden et al., 2011). 

4.2 Landscape metrics for hydrological applications 

The retention and significance of URBEXT in all quantity-based models indicates that total 

coverage of impervious surfaces is a more important factor in runoff generation and peak 

flows than the distribution and layout of such surfaces, as reflected in the general literature 

(Krebs et al., 2013; Shuster et al., 2005). Conversely, the replacement of URBEXT with PX, even 

in simpler models, clearly indicates that layout, connectivity and location of urban surfaces can 

be more important than impervious area alone for characterising the timing of runoff. The 

lack, or unexpected pattern, of variability in runoff timing across a range of urban 

development found in some studies, when only considering imperviousness or URBEXT (e.g. 

Gallo et al., 2013; Miller & Hess, 2017), could be in part due to such effects. This suggests that 

proximity index (PX) could be an improved measure of urbanisation for characterising the 

spatial effects on runoff timing in spatially-averaged ‘lumped’ catchment hydrological 

applications. In particular, such spatially-explicit and hydrologically-relevant landscape metrics 

could have a role for calibrating runoff timing parameters in national flood estimation methods 

that rely on lumped catchment models, such as the UK industry-standard Revitalised Flood 

Hydrograph (ReFH) model (EA, 2012; Kjeldsen, 2007; Kjeldsen et al, 2013). 

While this study has found only limited evidence for applying landscape metrics to better 

characterise the hydrological effects of natural greenspace in urban areas, the potential for 

spatially-explicit metrics such as PX is evident to improve poor performance of time-based 

metrics in certain validation catchments with large areas of such greenspace was indicative. 

Empirical research is limited and primarily set at local or plot scales (e.g. Jarden et al., 2015) 

the science at catchment scales is emerging and based primarily on modelling, showing that 
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spatial distribution of green infrastructure affects relative effectiveness in urban areas 

(Loperfido et al., 2014; Bell et al., 2016) and could be more important than overall coverage 

(Fry and Maxwell, 2017). Golden & Hoghooghi (2017) find this is an area of fertile research and 

suggest that novel measurements and big data are required. 

4.3 Study limitations and further research 

The limited number of sites, and their size and relative levels of urbanisation, means the 

statistical analyses are not representative of, and cannot be immediately applied to, larger 

catchments with more dense urban centres or types of development. Further, the lack of any 

extreme storm events limits any investigation into whether the patterns observed would 

change with more intense storms. Wider testing of the landscape metrics used here across a 

range of catchment sizes and levels of urbanisation, alongside additional metrics to represent 

storm drainage and green infrastructure, is required to determine if landscape metrics could 

improve the operational methods and is a key area for further research. An additional area 

would be the potential application for lumped hydrological modelling and performance 

comparison with distributed methods. 

5 Conclusions  

This study assessed the potential of spatially explicit landscape metrics compared to lumped 

catchment descriptors for explaining storm runoff from urbanised catchments. This had not 

been previously explored and provided an opportunity to empirically test whether findings 

from the limited modelling studies are reflected in empirical data at catchment scales and 

whether landscape metrics could lead to improvements in lumped-catchment attribution 

studies and flood estimation.  

The study showed that attribution of the volume and timing of storm runoff using lumped 

urban catchment descriptors, such imperviousness or urban extent, could be significantly 
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improved in combination with more spatially explicit landscape metrics capable of 

representing the connectivity, layout and location of urban surfaces. It was also demonstrated 

that landscape metrics applied to areas of natural greenspace within urban areas can be useful 

for explaining the volume of runoff generated in storm events. These observations suggest 

potential improvements in modelling design flood events or water resources in ungauged 

catchments where models rely on lumped catchment parameters. Landscape metrics pose 

significant potential for bridging the gap between the spatial limitations of more simple 

lumped modelling approaches and the more complex but data intensive limitations of 

distributed modelling approaches. Landscape metrics could also provide a less data-intensive 

and more repeatable means of investigating how the spatial configuration of green 

infrastructure and urban land-use interacts with hydrological response. 
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9 Tables 

Table 1: Hydrometerological storm response metrics used in the study to quantify variability in 

catchment responses to storm events  

  

Metric Description and units Reference application 

Hydrograph 
shape 

DR Direct Runoff - storm runoff volume 
expressed as depth over catchment 
area (mm) 

Shaw et al. (2010) 

PR Percentage runoff - proportion of 
rainfall converted to direct runoff (%) 

Burn and Borman (1993) 

Qmax Peak flow - maximum recorded flow 
during storm event (cumecs) 

Hollis and Ovenden (1998) 

θ Flood duration -  measure of 
hydrograph shape defined by duration 
where Q/Qmax= 0.5 (h) 

Braud et al. (2013) 

TP Time-to-peak - time between onset of 
storm runoff and peak flow (h) 

Gallo et al. (2013) 

Rainfall 
runoff 
timing 

TLPP Lag-time peak-to-peak - time between 
peak rainfall and peak flow from storm 
event (h) 

Scheeder et al. (2003) 

TLC Lag-time centroid-to-centroid - time 
between centroid of rainfall and 
centroid of storm flow (h) 

Hall (1984) 
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Table 2: Catchment descriptors and landscape metrics used for characterising catchment 

properties (full details on derivation provided in Supplementary Material Table 1) 

Catchment Descriptors 

AREA Catchment drainage area (km2) 

SAAR Standard-period Average Annual Rainfall (mm) rainfall for the period 1961-1990  

FARL Index of flood attenuation from rivers and lakes.  

BFIHOST Base flow index from Hydrology of Soil Types (HOST) Boorman et al. (1995) 

URBEXT FEH index of fractional urban extent  

PROPWET Index of proportion of time that soils are wet (%) 

DPLBAR Mean drainage path length 

DPSBAR Mean drainage path slope 

Landscape Metrics 

CONTIG Contiguity Index assesses spatial connectedness, or contiguity, of cells within a grid-
cell patch to provide an index of patch boundary configuration and thus patch shape. 

LPI Largest patch index quantifies the percentage of total landscape area comprised by 
the largest patch. As such, it is a simple measure of dominance. 

CLUMPY Clumpiness index quantifies the deviation of the proportion of like adjacencies 
involving the corresponding class from that expected under a spatially random 
distribution. 

COHESION Patch cohesion index measures the physical connectedness of the corresponding 
patch type. 

CONTAG Contagion Index assesses the extent to which patch types are aggregated or clumped 
as a percentage of the maximum possible; characterised by high dispersion and 
interspersion. 

PX Proximity Index (PX) accounts for hydrological distance and connectivity of all 
suburban and urban patches relative to catchment outlet 
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Table 3: Catchment average values for storm event metrics – subset by Calibration (11) and 

Validation (6) catchments 

Site ID AREA (km2) Freq 
 

Qmax (m3s-1) 
DR 

(mm) PR (%) Ɵ (h) TP  (h) LTPP  (h) TLCC  (h) 

Calibration  
  

 
       

EA_39052 51.96 52  3.45 2.3 18.2 12.4 7.5 3.1 8.4 

B1 18.37 50  0.61 1.7 12.4 18.0 14.9 10.5 13.5 

B2 12.49 30  1.30 1.8 16.5 4.7 5.2 1.2 5.3 

B3 12.55 12  2.50 3.9 34.0 3.5 5.7 1.6 4.1 

EA_39087 82.5 72  6.14 3.5 25.6 15.8 15.3 10.7 14.2 

S1 28.97 27  2.67 4.4 29.4 11.4 8.4 4.5 8.2 

S2 3.24 30  0.14 1.5 10.5 21.8 12.6 8.8 11.0 

S3 5.98 53  0.74 3.2 31.4 5.7 6.0 2.2 4.9 

S7 0.54 39  0.43 2.4 22.5 0.5 3.6 0.3 1.0 

S9 0.27 34  0.15 2.5 21.0 0.8 3.7 0.3 2.5 

S10 0.49 39  0.27 1.7 16.1 0.8 3.5 0.3 0.9 

Validation 
  

 
       

B4 33.66 34  0.93 1.1 9.8 13.3 10.2 6.4 9.2 

B5 37.5 37  1.74 2.2 15.4 14.4 10.6 6.6 10.0 

B6 58.24 51  4.26 3.0 21.6 13.3 9.6 5.1 9.5 

S4 3.09 74  0.45 3.0 24.9 5.5 6.9 3.4 5.5 

S5 2.18 56  1.50 2.9 26.4 0.8 3.8 0.7 1.2 

S6 35.2 18  4.49 6.0 43.9 17.7 9.3 5.6 10.5 

S8 2.16 56  0.37 2.3 21.3 2.9 4.9 1.4 3.5 
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Table 4: Catchment descriptor and landscape metric values 

  FEH catchment descriptors   Landscape metrics 

Site ID AR
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 (k
m
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EA_39052 51.96 7.46 0.36 676 0.86 0.19 24.7 0.29  3.55 47.89 3.66 0.40 0.81 93.77 26.88 0.36 0.81 98.42 0.60 
B1 18.37 4.77 0.29 679 0.88 0.09 25.3 0.29  1.15 50.96 0.15 0.37 0.54 59.62 11.89 0.39 0.74 93.65 0.53 
B2 12.49 3.9 0.51 686 0.94 0.19 21.5 0.29  1.69 58.08 1.44 0.38 0.74 78.94 41.75 0.37 0.85 98.89 0.63 
B3 12.55 3.75 0.43 672 0.92 0.37 17.9 0.29  2.76 52.81 13.30 0.48 0.83 95.90 51.63 0.36 0.78 99.24 0.64 
B4 33.66 6.22 0.36 680 0.9 0.12 25.8 0.29  2.07 49.96 0.53 0.38 0.68 74.27 17.11 0.39 0.80 96.74 0.64 
B5 37.5 6.52 0.34 678 0.87 0.13 22.5 0.29  1.85 50.35 0.63 0.38 0.71 80.54 19.15 0.38 0.80 97.19 0.64 
B6 58.24 7.84 0.34 674 0.87 0.17 30.2 0.29  2.84 48.34 3.26 0.37 0.81 93.58 23.95 0.37 0.81 98.20 0.65 

                     
EA_39087 82.5 9.31 0.39 698 0.95 0.23 27.4 0.34  3.95 55.55 8.10 0.42 0.83 96.77 11.73 0.40 0.83 97.41 0.55 
S1 28.97 5.82 0.38 707 0.97 0.23 35.8 0.34  3.88 57.48 10.96 0.36 0.82 96.23 6.66 0.36 0.76 95.09 0.47 
S2 3.24 2.12 0.67 712 0.85 0.03 33.8 0.34  0.2 76.41 0.00 0.00 0.00 0.00 6.26 0.39 0.69 81.36 0.00 
S3 5.98 2.84 0.32 683 1 0.57 33.4 0.34  1.68 61.72 31.27 0.34 0.85 97.68 50.79 0.44 0.74 98.38 0.00 
S4 3.09 2.11 0.43 688 1 0.33 14 0.34  1.38 68.04 1.05 0.55 0.82 70.68 79.31 0.89 0.66 99.64 0.84 
S5 2.18 1.79 0.43 688 1 0.39 33.7 0.34  3.53 52.52 9.91 0.40 0.77 85.53 38.82 0.57 0.70 96.05 0.17 
S6 35.2 6.29 0.36 705 0.96 0.29 40.6 0.34  4.28 55.45 13.56 0.40 0.83 97.06 10.43 0.40 0.81 95.98 0.47 
S7 0.54 0.95 0.56 692 1 0.4 45.2 0.34  1.54 52.68 3.65 0.44 0.70 66.01 48.86 0.69 0.19 94.72 0.00 
S8 2.16 1.79 0.34 684 1 0.31 27.3 0.34  1.07 52.68 1.50 0.60 0.94 74.81 70.47 0.63 0.72 98.88 0.84 
S9 0.27 0.69 0.37 685 1 0.51 28.9 0.34  0.66 62.34 0.00 0.00 0.00 0.00 99.08 0.83 0.00 99.95 0.00 
S10 0.49 0.6 0.54 686 1 0.37 35 0.34   2 93.82 0.00 0.00 0.00 0.00 6.66 0.36 0.76 95.09 0.00 
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Table 5: Derived model equations for response metrics based on multivariate regression between selected variables and observed hydrological 

response metrics for the 11 calibration catchments, with associated model fit to observed data using the adjusted R-squared (R2adj) criterion: * p 

value: 0.01 < p < 0.05, **p value:  0.01 < p < 0.001, *** p value: p < 0.001. 

Metric Var 1 Var 2 Var 3 Var 4 Linear model R2adj 

 

Qmax AREA*** URBEXT*** BFIHOST** CONTIGNAT 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 =  2.196 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴0.7050.924( 1
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)0.520( 1

𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑈𝑈)0.613𝐶𝐶𝐵𝐵𝑂𝑂𝑈𝑈𝐵𝐵𝑂𝑂𝑁𝑁𝑁𝑁𝑁𝑁2 0.972 

DR URBEXT** PROPWET** COHESIONSUB
* CONTIGNAT

** 𝐷𝐷𝑅𝑅 = 12.442 + 10.901 𝑈𝑈𝑅𝑅𝑈𝑈𝑅𝑅𝑈𝑈𝑈𝑈 + 25.031 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑈𝑈 − 0.243 𝐶𝐶𝑃𝑃𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈
+ 7.039 𝐶𝐶𝑃𝑃𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶𝑂𝑂𝑁𝑁𝑈𝑈 

0.84 

PR URBEXT*** SAAR** COHESIONSUB
** CONTIGNAT

*** 𝑃𝑃𝑅𝑅 = 19.351 + 110.392 𝑈𝑈𝑅𝑅𝑈𝑈𝑅𝑅𝑈𝑈𝑈𝑈 + 0.210 𝐶𝐶𝐴𝐴𝐴𝐴𝑅𝑅 − 1.974 𝐶𝐶𝑃𝑃𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 + 48.459 𝐶𝐶𝑃𝑃𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶𝑂𝑂𝑁𝑁𝑈𝑈 0.96 

θ DPLBAR*** BFIHOST** COHESIONSUB
*** PX** 𝜃𝜃 = 128.878 − 19.42 𝑈𝑈𝐵𝐵𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑈𝑈 + 2.287 𝐷𝐷𝑃𝑃𝐷𝐷𝑈𝑈𝐴𝐴𝑅𝑅 − 2.068 𝑃𝑃𝑈𝑈 − 1.215𝐶𝐶𝑃𝑃𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 0.99 

TP DPLBAR** PROPWET PX* LPISUB 𝑈𝑈𝑃𝑃 = 24.606 𝐷𝐷𝑃𝑃𝐷𝐷𝑈𝑈𝐴𝐴𝑅𝑅0.592𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑈𝑈1.4821.204( 1𝑃𝑃𝑈𝑈)𝐷𝐷𝑃𝑃𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈−0.193 0.83 

TLPP DPLBAR** PROPWET PX LPISUB 𝑈𝑈𝐿𝐿𝑃𝑃 = 150.506 0.11( 1
𝐷𝐷𝑃𝑃𝐿𝐿𝑈𝑈𝑁𝑁𝑈𝑈)𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑈𝑈1.4821.204( 1𝑃𝑃𝑈𝑈)𝐷𝐷𝑃𝑃𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈−0.492 0.82 

TLC DPLBAR*** PROPWET PX*** LPISUB
* 𝑈𝑈𝐿𝐿𝐶𝐶 = −2.905 + 2.369 𝐷𝐷𝑃𝑃𝐷𝐷𝑈𝑈𝐴𝐴𝑅𝑅 + 30.562 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑈𝑈 − 3.712 𝑃𝑃𝑈𝑈 − 0.051 𝐷𝐷𝑃𝑃𝐶𝐶𝐵𝐵𝑈𝑈𝑈𝑈 0.94 
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Table 6: Observed (obs) and predicted (calc) hydrological response metric values for seven 

independent validation catchments – with model predictive performance (MSE – Mean Square 

Error) using either calibration or validation data shown (calibration performance – in italics – 

based on 11 calibration catchments data).  

 Site ID Predictive performance 

  B4 B5 B6 S4 S5 S6 S8 
Validation 

(MSE)   
Calibration 

(MSE) 
freq 34 37 51 74 56 18 56    

           
Qmax,obs (m2s-1) 0.9 1.7 4.3 0.4 1.5 4.5 0.4    
Qmax,calc (m2s-1) 1.8 1.8 2.9 0.6 0.9 3.0 0.3 0.71  0.12 

DR,obs (mm) 1.1 2.2 3.0 3.0 2.9 6.0 2.3    
DR,calc (mm) 2.1 2.1 2.3 6.3 3.1 4.2 6.3 4.58  0.88 

PR,obs (%) 9.8 15.4 21.6 24.9 26.4 43.9 21.3    
PR,calc (%) 15.5 15.3 17.2 44.2 25.4 32.8 42.6 143.47  1.93 
θ,obs (h) 13.3 14.4 13.3 5.5 0.8 17.7 2.9    
θ,calc (h) 14.4 15.3 15.0 1.5 -1.7 10.8 4.0 3.94  0.35 
TP,obs (h) 10.2 10.6 9.6 6.9 3.8 9.3 4.9    
TP,calc (h) 10.0 10.4 9.8 5.2 4.1 10.4 5.2 0.64  3.56 
TLPP,obs (h) 6.4 6.6 5.1 3.4 0.7 5.6 1.4    
TLPP,calc (h) 4.6 4.4 4.1 1.4 1.5 7.1 1.3 2.25  5.68 
TLC,obs (h) 9.2 10.0 9.5 5.5 1.2 10.5 3.5    
TLC,calc (h) 12.1 13.6 12.8 3.3 -3.4 6.0 4.2 11.18  1.19 
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10 Figures 

Figure 1 
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Figure 2 
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Figure 3 
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11 Figure captions 

Figure 1: Study area and location of monitored catchments: calibration catchment labels are highlighted 

(B1, B2, B3, EA39052, S1, S2, S3, S7, S9, S10, EA39087).   

Figure 2: Land cover mapping used in derivation of catchment descriptors and landscape metrics 

Figure 3: Subset plots for each hydrological metric: a) Catchment descriptors, b) Catchment descriptors 

and landscape metrics 
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