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Abstract Two contrasting rapeseed genotypes, Qinyou 8 (drought-sensitive) and Q2 

(drought-tolerant), were studied under drought stress with or without pretreatment 

with melatonin to (i) explore whether melatonin enhances drought resistance by 

regulating root growth and (ii) determine the relationship between the belowground 

and aboveground responses to melatonin under drought stress. Results show that the 

light-saturated rate of photosynthesis (Pn), stomatal conductance (gs), water use 

efficiency (WUE) and chlorophyll content were decreased by drought for Qinyou 8, 

whereas  drought  only  decreased  Pn   and  chlorophyll  content  for  Q2.  Drought 

decreased   actual   photochemical   efficiency  in   saturated  light   (Fv’/Fm’),  actual 

photochemical efficiency (PhiPSⅡ), quenching of photochemical efficiency (qL) and 
 

electron transport rate (ETR) in Qinyou 8. However drought only decreased Fv’/Fm’ 

and qL in Q2. Drought increased malondialdehyde (MDA) and hydrogen peroxide 

(H2O2)  contents  in  the  roots  of  both  genotypes.  Melatonin  had  no  significant 

additional effects on root guaiacol peroxidase (POD) and superoxide dismutase (SOD) 

activities,  but  enhanced  root  catalase  (CAT)  activity of  droughted  plants  further. 

Melatonin promoted taproot and lateral root growth under drought stress. Melatonin 

also  promoted  stomatal  opening  resulting  in  enhanced  photosynthesis  in  the  two 

genotypes.  The  two  mechanisms  induced  by  melatonin  synergistically  enhance 

drought resistance of rapeseed as indicated by enhanced gas exchange parameters 

under melatonin pretreatment. The findings provide evidence for a physiological role 

of melatonin in improving drought resistance, especially in belowground parts. 

 
 
 
 
Abbreviations 

ABA, abscisic acid 

CAT, catalase 

Ci, intercellular CO2 concentration 
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1.   Introduction 
 

 

Drought is one of the biggest threats to global food security and is becoming a 

more serious problem due to scarce water resources and the increasing population 

(Wang et al., 2003). Human-caused climate change makes extreme weather conditions 

such as droughts and heat waves a more frequent occurrence (Mann et al., 2017). 

Drought stress inhibits plant growth by affecting various aspects of plant life, 

especially by inducing alterations in water relations within the rhizosphere and plant 

(Turner and Begg, 1981). Plant responses to water scarcity are complex, involving 

adaptive changes and/or deleterious effects (Chaves et al., 2002). Overall, plants 

respond to water deficit via different mechanisms including physiological, metabolic 

and defence systems. Responses include well-developed root systems, changes in 

plant hormones, enhanced antioxidant enzymatic systems, stomatal closure and 

production of low molecular osmolytes, such as glycine betaine, proline and other 

amino acids (Zhu, 2003). In recent years, genetic engineering and conventional 

breeding techniques have been proven promising for enhancing tolerance to various 

abiotic  stresses;  however,  these  methods  are  either  expensive,  complicated,  and 

time-consuming,   or   even   unacceptable   in   many   countries   around   the   world 

(Moshelion et al., 2015). In addition, many investigators gradually improved plant 

drought    resistance    by    exogenously    applied    or    endogenously    available 

drought-resistance chemicals such as abscisic acid (ABA) (e.g. Li et al., 2011; Sharp 

et al., 2000; Wang et al., 2003). However, applications of ABA are equally limited in 

actual agricultural practice due to its rapid catabolism by relevant enzymes, chemical 

instability and high production costs (Naeem et al., 2016; Xiong et al., 2018). Hence, 

it  is  necessary  to  explore  some  alternative  drought-resistance  chemicals  and 

investigate  corresponding  mechanism  of  drought  resistance  to  mitigate  harmful 

effects of drought on food production in the future. 

 

Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring compound 

https://www.engadget.com/2017/04/07/climate-change-airplane-turbulence-study/
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As a well-known animal hormone, melatonin has many important biological functions 

regarding circadian rhythms, mediating changes in seasonal reproduction, tumour 

inhibition, immuno-enhancement and reducing oxidative stress (Arnao et al., 2014; 

Demas and Nelson, 1998; Tan et al., 2012). Since 1995, melatonin has been detected 

in  the  roots,  leaves,  seeds  and  fruits  of  a  considerable  variety  of  plant  species 

(Dubbels et al., 1995; Hattori et al., 1995). Numerous studies have demonstrated that 

melatonin plays an important role in regulating growth and development of vascular 

plants, and as an antioxidant protecting plants against (a)biotic stress (e.g. Lei et al., 

2013; Shi and Chan, 2014; Tal et al., 2011; Zhang et al., 2013). The antioxidative 

effect of melatonin has been reported for several plant species, for example rice (Park 

et al., 2013), maize (Jiang et al., 2016), apple (Wang et al., 2012) and grape (Vitalini 

et al., 2013). Li et al. (2012) reported that exogenous melatonin application to Malus 

hupehenis decreased the oxidative damage caused by reactive oxygen species (ROS) 

via directly scavenging hydrogen peroxide (H2O2) and enhancing antioxidant enzyme 

activities. Melatonin application enhanced tolerance to salt and drought stress in 

soybean by up-regulating the expression of genes that were inhibited by salt stress 

(Wei et al., 2015). Melatonin is now known to alter many plant characteristics 

including germination (Zhang et al., 2013), seedling growth, flowering time, grain 

yield and senescence (Byeon and Back, 2014; Wang et al., 2013). Another unique 

function of melatonin in plants is its auxin-like activity, thereby promoting plant 

growth. Chen et al. (2009) found that melatonin application promotes root growth in 

Brassica juncea, and Sarropoulou et al. (2012) reported the promotion of adventitious 

root regeneration in shoot tip explants of Prunus cerasus L. Therefore, melatonin 

appears to play an important role in abiotic stress resistance, especially drought and 

salt stress. 

 

However,  most  studies  on  melatonin-enhancing  stress  resistance  have  been 

limited to leaf responses so far (e.g. Li et al., 2012; Vitalini et al., 2013; Wang et al., 

2012), few studies focused on root responses to melatonin under stress conditions. 

Zhang et al. (2013) only investigated melatonin effects on root growth for a very 
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limited number of parameters in cucumber, excluding antioxidant responses. The 

impact of melatonin on root growth and root antioxidant responses under drought 

stress are still unclear to date. In addition, systematic studies on belowground and 

aboveground responses to melatonin under drought stress are very limited. Hence, 

studies  exploring  the  internal  relationships  between  the  belowground  and 

aboveground responses of plants to melatonin under drought stress are needed. 

 

Rapeseed (Brassica napus L.) is the most important oil crop in China (Wang et 

al., 2010). It is very susceptible to water deficit  during the entire growth period 

(Zhang   et   al.,   2014b).   In   this   study,   two   rapeseed   genotypes,   Qinyou   8 

(drought-sensitive) and Q2 (drought-tolerant), were subjected to drought stress after 

pretreatment with or without exogenous melatonin. We hypothesized that drought 

significantly inhibits the growth of rapeseed and that melatonin will improve drought 

tolerance in roots. The objectives of this study were to (1) explore how melatonin 

improves drought resistance via regulating root growth; and (2) investigate the 

relationship between the belowground (root growth and root antioxidant response) 

and aboveground (stomatal structure and gas exchange) responses to melatonin under 

drought stress. 

 
 
 
 

2.   Materials and methods 
 

 

2.1. Plant materials and experimental conditions 
 

 

Seeds of two contrasting rapeseed (Brassica napus L.) genotypes, Qinyou 8 

(drought-sensitive) and Q2 (drought-tolerant), were obtained from the Oil Crops 

Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), 

Wuhan, China. The two genotypes were chosen because of their significant difference 

in  drought  resistance  (Naeem  et  al.,  2016;  Xiong  et  al.,  2018).  The  seeds  were 

surface-sterilized with mercury (Ⅱ) chloride for 10 min, washed in running tap water 
 

for 15 min, and germinated in an incubator at 25 °C. Three germinated seeds were 

planted per pot (height 15 cm, width 12 cm) filled with a mixture of vermiculite, soil 
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and sand (2:1:1, v/v/v); 5-g slow-release fertilizer containing 13% N, 10% P and 14% 

K was added to each pot. 

 

Three-leaf stage rapeseed seedlings were irrigated with 100 µM melatonin 

solutions (M
+
) or distilled water (M

-
) for 7 days (7 d, 200 ml per pot each day), 

respectively. The melatonin (Sigma–Aldrich, St. Louis, MO, USA) solutions were 

dissolved in ethanol followed by dilution with MilliQ water [ethanol/water (v/v) D 

1/10000]. After melatonin pretreatment, the seedlings were subjected to drought (W
-
) 

 

or well-watered (W
+
) for another 7 d. Hence, there were four treatments in total (1) 

17 
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M
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-
W
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pretreatment + drought); (3) M
+
W

+ 
(100 µM melatonin pretreatment + well-watered); 

 

(4) M
+
W

- 
(100 µM melatonin pretreatment + drought). The melatonin concentration 

(100 µM) applied in this study was based on Li et al. (2014). There were 16 

replications per treatment per genotype, so 128 plants in total, as lots of leaf samples 

were needed for the analyses. The seedlings were grown under a movable rain shelter 

to avoid rain affecting the experiment. The parameters described below were 

determined after 14 d after initial melatonin application (7 d of drought stress 

treatment). 

 

Soil  moisture  content  (%)  was  monitored  daily  using  a  Soil  Moisture  Kit 
 

(HH2-ML3, DELTA-T, CO, UK). 
 

 

2.2.   Photosynthetic gas exchange and chlorophyll content 
 

Gas   exchange   was   measured   with   a   portable   photosynthesis   system 

(Licor-6400XT, LI-COR Inc., Lincoln, NE, USA) as described by Feng et al. (2011) 

and Dai et al. (2017). The following parameters were determined: light-saturated rate 

of  photosynthesis  (Pn,  μmol  m
-2   

s
-1

),  stomatal  conductance  (gs,  mol  m
-2   

s
-1

), 

intercellular CO2  concentration (Ci, μmol mol
-1

), and transpiration rate (Tr, mol m
-2

 

 

s
-1

). Leaf water use efficiency (WUE, μmol CO2  mmol
-1  

H2O) was calculated as the 

ratio of Pn  and Tr. Two fully expanded upper leaves from one plant were randomly 

selected in each pot. Photosynthetic Photon Flux Density (PPFD) was controlled at 
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1200   μmol   m
-2    

s
-1    

(light-saturation),   block  temperature  at   25   °C,   the  CO2 

concentration in air entering the leaf chamber at 400 μmol mol
-1 

and the relative 

humidity at 50-70%. The measurements were conducted between 09:00-12:00 h. After 

the gas exchange measurements, chlorophyll content was determined  at the same 

leaves as photosynthesis measurement using SPAD-502 (PLUS, KONICA MINOLTA, 

Japan). 

 

2.3.   Chlorophyll a fluorescence 
 

Fully expanded leaves at the top of plants were randomly selected to measure 

actual photochemical efficiency of photosystem II (PSⅡ) in saturated light (Fv’/Fm’), 

actual  photochemical  efficiency  of  PSⅡ in  light  (PhiPSⅡ), quenching  of 

photochemical  efficiency  of  PSⅡ (qL)  and  electron  transport  rate  (ETR)  using 

MINI-IMAGING-PAM (Walz Company, Germany) according to Naeem et al. (2016). 
 

 

2.4. Stomatal structure, density and aperture 
 

 

Leaf stomata were observed using scanning electron microscopy (SEM). Briefly, 

three leaves were randomly selected per treatment for each genotype in the fourth 

position from the top of each plant and samples were immediately fixed with a 4% 

glutaraldehyde solution in 0.1 M phosphate-buffered saline (PBS; pH 6.8). After 

being rinsed  five times with PBS (each 5, 10, 15, 20 and 30 min  respectively), 

samples   were   dehydrated   using   a   graded   ethanol   series,   vacuum-dried   and 

gold-coated. SEM was performed using a JSM-SU8010 microscope (JEOL Ltd., 

Tokyo, Japan). Stomata were counted at random in 20 visual sections on the abaxial 

epidermis, and final tallies were used to compute their densities (mm
2
). Lengths (μm), 

 

widths (μm) and apertures (μm) were measured randomly from 20 stomata on the 

same specimens using Image J software (Li et al., 2014). 

 

2.5.   Root structure 
 

 

Root structure was measured using a root scanner (Epson Expression 11000XL, 

EPSON,  Nagano,  Japan)  and  analyzed  using  WinRHIZO  software  (LC4800-Ⅱ 
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LA2400, Saint foy, Canada). Total root length (cm), taproot length (cm), a lateral root 

length (cm), root diameter (mm), root surface area (cm
2
) and volume (cm

3
) of each 

sample were determined (Zhang et al., 2013). 

 

2.6.   Oxidation products and antioxidants in roots 
 

 

Roots were sampled between 12:00 and 14:00 h and quickly wrapped in tinfoil, 

immediately frozen in liquid N and stored at -80 °C until analysis. Frozen root tissues 

were ground into power in liquid N with a mortar and a pestle for the biochemical 

assay. Malondialdehyde (MDA, μmol g
-1 

FW) content was assessed to estimate lipid 

peroxidation by 2-thiobarbituric acid-reactive metabolite (TBARS) according to the 

method of Heath and Packer (1968) and calculated by the equation of CMDA (m mol 

L
-1

) = 6.45 × (OD532 – OD600) – 0.56 × OD450. The hydrogen peroxide (H2O2, μmol g
-1

 

 

FW)  content  was  determined  as  a  H2O2–molybdate  complex  resulting  from  the 

reaction of tissue–H2O2 with molybdate; 0.1 g roots were ground in liquid N in 1.0 

mL saline solution. The samples were centrifuged at 2300 g, 4 °C for 20 min, the 

supernatant was collected and the H2O2 content was determined according to the 

method described by Sengupta et al. (2013). 

 

Antioxidant enzyme extraction and analysis 
 

 

To avoid potential differences of the content of antioxidant enzymes in different 

root positions, all samples were collected from taproot tips. Approximately 0.05 g 

fresh roots tissue were ground in liquid N and extracted with 2 mL of 50 mM sodium 

phosphatebuter (pH 7.0, containing 1% vinyl pyrrolidone). The samples were 

centrifuged at 18, 000 g, 4 °C for 20 min and the supernatant was collected. All 

-1
 

49 231 
50 

extractions  were  carried  out  on  ice.  Peroxidase  (POD,  U g  FW)  activity  was 

51 232 
52 

53 233 
54 

55 234 
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57 235 
58 

59 236 

measured as follows: 3 mL reaction mixture contained 50 mM phosphate buffer (pH 
 

7.0), 0.2 mM guaiacol and 10 mM H2O2. The reaction was initiated by adding 100 μL 

of enzyme extract and the oxidation of guaiacol was measured by the increase in 

absorbance at 470 nm. Superoxide dismutase (SOD, U
-1  

g FW) activity was 

determined by estimating its ability of inhibiting the photochemical reduction of nitro 
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blue tetrazolium (NBT) and the absorbance was read at 560 nm. The amount of 

enzyme that inhibited 50% NBT reduction was defined as one unit of SOD activity. 

Catalase (CAT, U
-1  

g FW) activity was determined according to the description by 

McKee et al. (1997). The changes of absorbance at 240 nm were monitored after the 

enzyme extract was mixed with 30 mM KH2PO4/K2HPO4 (PH 7.0) containing 10 mM 

H2O2. The unit of CAT and POD activity was defined as the decrease and increase of 

0.01 ΔOD per minute at 240 nm and 470 nm, respectively. All measurements were 

conducted using spectrophotometric methods. 

 

2.7. Biomass 
 

 

Five intact plants per treatment were randomly collected and sampled for the 

determination of biomass components, i.e. leaves, stems and roots. The dry weight of 

different plant organs was determined after drying in an oven at 65 °C for 7d until 

constant weight. 

 

2.8. Statistical analysis 
 

 

All original data passed Shapico-Wilk and Levene’s tests for normality and 

homogeneity of variance. Analysis of variance (ANOVA) for the variables was 

performed using the SPSS 20.0 for Windows statistical software package (SPSS, Inc., 

Chicago, IL, USA). Turkey’s Honestly Significant Difference (HSD) test was applied 

to identify significant differences for each genotypes, respectively. P ≤ 0.05 was 

considered as statistically significant. 

 
 
 
 

3.   Results 
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Fig. 1. Soil moisture contents in the pots in Qinyou 8 (drought-sensitive) and Q2 

(drought-tolerant) genotypes for each drought day (averaged values, n = 5). M
-
W

+
: 

distilled water pretreatment + well-watered, M
-
W

-
: distilled water pretreatment + 

drought; M
+
W

+
: 100 µM melatonin pretreatment + well-watered, M

+
W

-
: 100 µM 

melatonin pretreatment + drought. 

 
 
 
 
3.1. Biomass and chlorophyll content 
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indicate per genotype significant differences between treatments (mean ± SD, Tukey 
 

test, P ≤ 0.05, n = 5). 
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Drought decreased chlorophyll content by 30.8 and 26.9% in Qinyou 8 and Q2, 

regardless of melatonin treatment. However, there was no effect of melatonin on 

chlorophyll content when averaged for drought treatments. No significant interaction 

between drought and melatonin on chlorophyll content was found in both genotypes 
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Fig. 2. Effects of drought and melatonin on chlorophyll content (A), aboveground 

(B)  and  belowground  biomass  (C)  in  Qinyou  8  (drought-sensitive)  and  Q2 

(drought-tolerant)  genotypes.  M
-
W

+
:  distilled  water  pretreatment  +  well-watered, 

M
-
W

-
: distilled water pretreatment + drought; M

+
W

+
: 100 µM melatonin pretreatment 

 

+ well-watered, M
+
W

-
: 100 µM melatonin pretreatment + drought. Different letters 
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(Fig.2 A). 
 

 

For Qinyou 8, drought reduced aboveground and belowground biomass by 30.6 

and 41.9%, respectively, when averaged for drought treatments. However melatonin 

had no significant effects on biomass (+14.2 & 28.3% for aboveground and 

belowground   biomass,   respectively),   regardless   of   drought.   For   Q2,   drought 

decreased only aboveground biomass (-22.9%), but it had no significant effects on 

belowground biomass (-19.9%), regardless of melatonin treatment. Neither 

aboveground nor belowground biomass was affected by melatonin, when averaged for 

drought treatments (Fig.2 B&C). 

 
 
 
 

3.2. Gas exchange 
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Fig. 3. Effects of drought and melatonin on light-saturated photosynthesis (Pn, A), 
 

stomatal conductance (gs, B), intercellular CO2  concentration (Ci, C), and water use 

efficiency (WUE, D) in Qinyou 8 (drought-sensitive) and Q2 (drought-tolerant) 

genotypes. For details of treatments and the meaning of different letters, see Fig. 2 (n 

= 3). 
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Qinyou 8 and Q2, respectively. However, M
+
W

- 
increased Pn by 138.5 and 88.3% in 

Qinyou 8 and Q2, respectively, compared to M
-
W

-  
(Fig.3 A). gs  was decreased by 

drought (M
-
W

-
) in Qinyou 8 (-82.0%), but it was not affected in Q2 (-63.3%) (Fig.3 

6 - - - +
 

7 300 B). Drought  (M W ) had  no  effect  on  Ci   compared  to  M W in  both  genotypes. 

8 + - + +
 

9 301 
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However, M W treatment increased Ci  in Qinyou 8 (+37.3%) compared to M W 
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(Fig.3 C). Compared to M
-
W

+
, WUE was decreased by drought (M

-
W

-
) in Qinyou 8 

 

(-33.7%), but not in Q2 (-26.9%). However, M
+
W

+ 
treatment increased WUE by 37.5 

and 53.6% in Qinyou 8 and Q2, respectively, compared to M
-
W

+
(Fig.3 D). 

 
 
 
 
3.3. Chlorophyll a fluorescence 
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Fig. 4. Effects of drought and melatonin on actual photochemical efficiency of PSⅡin 

saturated light (Fv’/Fm’, A), actual photochemical efficiency of PSⅡin light (PhiPSⅡ, 

B), quenching of photochemical efficiency of PSⅡ(qL, C) and electron transport rate 

(ETR, D) in Qinyou 8 (drought-sensitive) and Q2 (drought-tolerant) genotypes. For 
 

details of treatments and the meaning of different letters, see Fig. 2 (n = 3). 
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Compared to M
-
W

+
, Fv’/Fm’ for Qinyou 8 and Q2 was decreased by 13.0% and 313 
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Fig. 5. SEM images of stomata in leaves of Qinyou 8 (drought-sensitive) and Q2 
 

(drought-tolerant) genotypes, respectively: stomata in leaves of well-watered plants 

(A and C); stomata in drought treatment for 7 d (B and D); stomata from well-watered 

plants  pre-treated  with  100  µM  melatonin  (E  and  G);  and  stomata  in  drought 

treatment pre-treated with 100 µM melatonin (F and H). Magnification × 4500, scale 
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7.3%, respectively, when subjected to drought (M
-
W

-
). However, M

+
W

- 
had no effect 

on Fv’/Fm’ in Qinyou 8 (-5.6%) and Q2 (-2.3%), respectively, compared to M
+
W

+
. 

M
+
W

-  
increased Fv’/Fm’ in Q2 (+6.0%) but not in Qinyou 8 (+5.4%), compared to 
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317 M
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Qinyou 8 (-4.4%) and Q2 (-0.3%), compared to M
+
W

+ 
(Fig.4 B). M

-
W

- 
decreased qL 

 

by 28.7 and 23.7% in Qinyou 8 and Q2, respectively, compared to M
-
W

+
. M

+
W

- 

treatment did not affect qL in Qinyou 8 (-15.4%) and Q2 (-8.2%), compared to M
+
W

+
. 

M
+
W

- 
increased qL by 19.3% only in Q2 (Fig.4 C). ETR was decreased by M

-
W

- 
in 

Qinyou 8 (-12.1%) only, compared to M
-
W

+
. No effect was found of M

+
W

- 
on ETR in 

Qinyou 8 (+4.3%) and Q2 (-5.4%), compared to M
+
W

+
. 

 
 
 
 
3.4. Stomatal structure, density and aperture 
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Fig. 6. Effects of drought and melatonin on stomatal length (A), width (B), aperture 
 

(C) and density (D) in leaves of Qinyou 8 (drought-sensitive) and Q2 
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(drought-tolerant) genotypes. For details of treatments and the meaning of different 

letters, see Fig. 2 (n = 20). 

 

Compared with well-watered plants (Fig.5 A, C), drought caused nearly all 

stomata to close in both genotypes (Fig.5 B, D). Correspondingly, stomatal aperture 

was reduced in M
-
W

- 
by 86.4 and 84.0% for Qinyou 8 and Q2, respectively compared 

with M
-
W

+ 
(Fig.6 C). In the melatonin pretreatment, stomata remained partially open 

in  the two  genotypes  under drought  conditions  (Fig.5  F,  H).  Moreover,  stomatal 

aperture was increased in the M
+
W

-  
treatment by 80.1 and 92.0% for Qinyou 8 and 

17 + + + -
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8 (+7.82-fold) and Q2 (+9.04-fold), respectively compared with  M
-
W

-  
(Fig.6 C). 

 

Stomatal length and width were not affected by M
-
W

-  
compared with M

-
W

+ 
except 

that stomatal length was decreased by M
-
W

- 
in Qinyou 8 (-17.6%) (Fig.6 A, B). M

+
W

- 

treatment had no effect on stomatal length and width except that stomatal width was 

decreased in Qinyou 8 (-49.4%) compared with M
+
W

+ 
(Fig.6 A, B). Stomatal density 

was  increased  by  M
-
W

-   
in  Qinyou  8  (+67.6%)  and  Q2  (42.4%),  respectively 

compared with M
-
W

+
. M

+
W

- 
treatment decreased stomatal density in Qinyou 8, but it 

had no effect on stomatal density in Q2 compared with M
-
W

- 
(Fig.6 D). 

 
 
 
 
3.5. Root structure 
 

Drought (M
-
W

-
) only increased lateral root length of Q2, compared to M

-
W

+
, 

whereas drought had no effect on any root structure parameters of Qinyou 8. However, 
 

46 + -
 

47 358 melatonin pretreatment (M W ) increased lateral root length of Qinyou 8, compared to 

48 + + + -
 

49 359 
50 

51 360 
52 

53 361 

M W .  Taproot  length  and  lateral  root  length  of  Q2  were  increased  by  M W , 
 

compared to M
-
W

+
. No significant effects of drought or melatonin pretreatment on the 

total root length, root diameter, root surface area and root volume were found (Table 
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Table 1 Effects of melatonin on root structure for Qinyou 8 and Q2 genotypes under well water and drought conditions. M
-
W

+
: distilled water 

pretreatment + well-watered; M
+
W

+
: 100 µM melatonin pretreatment + well-watered; M

-
W

-
: distilled water pretreatment + drought; M

+
W

-
: 100 

µM melatonin pretreatment + drought. Values are means of three replicates ± SD. The letters are based on the Tukey test and are only shown for 

parameters that show significant differences between treatments. 

 

 
 
 

taproot length
 

total root length 
genotypes treatments 

21 (cm) 
22 

23 

 
 

(cm) 

a lateral root 

length (cm) 

root diameter 

(mm) 

root surface area 

(cm
2
) 

root volume (cm
3
) 
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26 
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28 Qinyou 8 
29 

30 

31 

M
-
W

+ 
1215 ± 20.17 44.95 ± 11.28a 24.27 ± 2.209ab 3.197 ± 0.190 389.3 ± 12.38 96.87 ± 5.458 

 

M
+
W

+ 
1076 ± 141.9 38.87 ± 9.592a 19.05 ± 1.517b 3.611 ± 0.783 391.4 ± 10.47 111.0 ± 26.44 

 

M
-
W

- 
1141 ± 72.32 41.15 ± 2.735a 24.98 ± 3.651ab 3.122 ± 0.314 376.8 ± 20.27 88.56 ± 8.373 

 

M
+
W

- 
1119 ± 108.6 42.06 ± 10.93a 29.12 ± 1.435a 3.531 ± 0.567 381.1 ± 20.00 102.5 ± 16.22 

32 - + 

33 

34 

 

973.6 ± 181.6 31.96 ± 4.083b 17.79 ± 6.052b 3.813 ± 0.628 394.3 ± 14.92 117.2 ± 22.91 

 

35 

36 

37 Q2 

M
+
W

+ 
1049 ± 64.07 38.86 ± 6.501ab 22.09 ± 3.223ab 3.561 ± 0.330 392.1 ± 2.065 116.1 ± 13.57 

 

M
-
W

- 
1131 ± 141.6 46.27 ± 10.67ab 28.49 ± 0.086a 3.500 ± 0.553 378.0 ± 7.064 105.1 ± 18.94 
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see Fig. 2 (n = 3). 381  
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3.6. Oxidation products and antioxidants in roots 
 

 

Compared with M
-
W

+
, MDA and H2O2  content for M

-
W

- 
was increased for both 

genotypes. The increase was 143 & 109% for MDA, 95.4 & 120% for H2O2 in Qinyou 8 and 

Q2  genotypes,  respectively.  However,  melatonin  pretreatment  reduced  the  production  of 

MDA and H2O2 as suggested by the lower increases induced by M
+
W

- 
, i.e. 100% for MDA in 

Q2,  56.6  &  86.5%  for  H2O2   in  Qinyou  8  and  Q2,  respectively  compared  with  M
+
W

+
. 

 

Furthermore, M
+
W

- 
had no effect on MDA and H2O2 contents in Qinyou 8 (-23.6 & -14.6%) 

 

and Q2 (-14.6 & -15.6%), respectively compared with M
-
W

- 
treatment (Fig.7). 

 

 

 
 

 

Fig. 7. Effects of drought and melatonin on malondialdehyde (MDA, A) and hydrogen 

peroxide (H2O2, B) content in the taproot tips of Qinyou 8 (drought-sensitive) and Q2 

(drought-tolerant) genotypes. For details of treatments and the meaning of different letters, 
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on  POD and  SOD activities  in  droughted plants,  but  it  stimulated  CAT activity further 391  
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Fig. 8. Effects of drought and melatonin on peroxidase (POD, A), superoxide dismutase 

(SOD, B) and catalase (CAT, C) activities in the taproot tips of Qinyou 8 (drought-sensitive) 

and Q2 (drought-tolerant) genotypes. For details of treatments and the meaning of different 

letters, see Fig. 2 (n = 3). 

 

Antioxidant enzyme activities were stimulated by drought (M
-
W

-
) in both genotypes 

compared with M
-
W

+
, except for POD in Qinyou 8 and for CAT in both genotypes. The 

increases were 57.8 & 71.4% in POD, 94.5 & 136% in SOD, and 30.6 & 60.9% in CAT for 

Qinyou 8 and Q2, respectively. Melatonin pretreatment had no significant additional effects 
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relationship between Pn  and chlorophyll content (R
2  

= 0.64, P < 0.0001, data not shown), 418  
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because M

+
W

-  
treatment significantly increased CAT activity, compared to M

+
W

+
, whereas 

 

M
-
W

- 
had no effect on CAT activity, compared to M

-
W

+ 
(Fig.8). 

 
 
 
 
 

4.   Discussion 
 

 

The beneficial effects of melatonin in mitigating abiotic stress have been documented in 

many studies, e.g. UV radiation (Afreen et al., 2006), extreme temperatures (Lei et al., 2013; 

Shi and Chan, 2014), heavy metals (Posmyk et al., 2008; Tan et al., 2007), salt stress (Li et al., 

2012; Tal et al., 2011; Zhang et al., 2014a) and drought stress (Li et al., 2014; Wang et al., 
 

2013; Zhang et al., 2013). However, the way in which melatonin improves drought tolerance 

via effects on roots has not been investigated systematically before. Here, we investigated the 

belowground (root growth and root antioxidant metabolism) and aboveground (stomatal 

structure and gas exchange) responses of rapeseed to melatonin under drought stress. The 

results show that melatonin not only promoted the growth of lateral roots and the taproot, but 

also enhanced the activity of CAT in the taproot tip. In addition, melatonin promoted stomatal 

opening (i.e. increases stomatal aperture) and therefore enhanced gas exchange in leaf of 

drought-sensitive and tolerant genotypes. 

 

Various experiments have shown that stomatal responses are often more closely linked 

to soil moisture content than to leaf water status (e.g. Davies and Zhang. 1991; Stoll et al., 

2000). Plant water status adjustments induced by drought have a direct impact on 

photosynthesis and in turn affect physiological processes in plants (Robredo et al., 2007). In 

our  study,  Pn   and  gs   were  decreased  by  drought  in  the  two  genotypes,  but  exogenous 

melatonin application mitigated the reduction in Pn. Higher Pn  under M
+
W

- 
(melatonin and 

 

drought) treatment indicates higher carbon fixation and photosynthesis for optimum growth 

compared with the M
-
W

-  
(distilled water and drought) treatment. Although the higher Pn 

under M
+
W

-  
seems to be due to a higher gs, melatonin did not significantly affect gs  in the 

drought treatment because of the high variation in gs. However, a significant positive linear 
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partially opening of stomata induced by melatonin did not cause more water loss. It may be a 446  
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indicating that variation in Pn induced by drought maybe ascribed to changes in chlorophyll 

content. Chlorophyll a fluorescence is an important indicator for quantifying the 

photosynthetic activities in plants (Carvalho et al., 2001). In this study, a decline in Fv’/Fm’, 

PhiPSⅡ, and qL by drought suggests that drought stress may have induced photo-inhibitory 

or photo-oxidative processes in the two genotypes to some extent. Higher reductions in 

PhiPSⅡ in Qinyou 8 indicated that Qinyou 8 had a weaker capacity for carbon metabolism 
 

and/or a lower utilization of ATP and NADPH than Q2. Melatonin may protect the plants 

from photo-inhibitory or photo-oxidative induced by drought. No significant difference was 

found between M
+
W

- 
and M

+
W

+ 
treatments among the four fluorescence parameters. In 

accordance with our findings, Ding et al. (2017) also found that exogenous melatonin 

mitigates photo-inhibition by accelerating non-photochemical quenching in tomato seedlings 

exposed to moderate light. Additionally, the chloroplasts ultra-structure of cucumber leaves 

under PEG treatment (PEG simulated drought) was improved by melatonin treatment (Zhang 

et al., 2013), supporting the conclusion that pretreatment with melatonin might protect plants 

from photo-inhibition or photo-oxidation induced by drought further. 
 

 

In addition, SEM stomatal images showed that drought stress caused stomata to close. 

Many studies have shown that closing of stomata is an effective way to reduce water loss in 

vivo, enabling plants to adapt to drought stress (e.g. Chaves et al., 2002; Naeem et al., 2016). 

However, in our study, we found that stomata stayed partially open under drought stress after 

melatonin pretreatment. It is suggested that melatonin maintains water and CO2 transport 

through stomata to some extent to maintain photosynthesis under drought condition (Jarvis et 

al., 1999). Stomatal aperture was increased by M
+
W

-  
(drought and melatonin) treatment for 

Qinyou 8 and Q2 genotypes compared with M
-
W

-
, which further supports the conclusion. 

 

Other studies  show  that  melatonin  could  improve the  functions  of stomata by enabling 

stomata to re-open under osmotic stresses such as drought (Li et al., 2014) or salt stress (Ye et 

al., 2016). Our study shows that there is no significant difference in soil moisture content 

with and without melatonin pretreatments under drought (data not shown), suggesting that 
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trade-off strategy between enhanced photosynthesis and potential water loss due to partially 

open of stomata. Further studies are needed to explore the effects of melatonin on stomata, 

especially under more severe or longer drought treatments. Stomatal width was decreased by 

melatonin compared with drought stress, indicating that stomata were narrower than those 

under drought stress. Overall, melatonin significantly increased stomatal aperture, decreased 

stomatal width, but had no effect on stomatal length in our study. However, Li et al. (2014) 

showed that melatonin significantly increased stomatal aperture and width, whilst reducing 

stomatal density of Malus species under drought conditions. Reported differences in the 

effect of melatonin on stomatal size (length and width) and density may be ascribed to 

species-specific difference, the time/concentrations of melatonin treatments and/or the 

magnitude of drought stress. A review by Hernández-Ruiz (2014) concluded that the effects 

of melatonin are dependent on its concentrations. 

Root structure determines the ability of plants to capture water and nutrients, which is 

critical for drought tolerance (Markesteijn and Poorter, 2009). In the present study, drought 
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increased lateral root length of Q2 only, compared to M W , whereas it had no effect on any 
 

root structure parameters of Qinyou 8, suggesting that drought promoted lateral root growth 

to absorb moisture from greater depth only for Q2. The mechanisms underlying the sustained 

root growth under drought stress include osmotic adjustment and an increase in the loosening 

capacity of the cell wall (Chaves et al., 2002). However, melatonin pretreatment significantly 

increased lateral root length of Qinyou 8 compared to M
+
W

+
, and significantly increased 

taproot length and lateral root length of Q2 compared to M
-
W

+
. Therefore, we conclude that 

 

melatonin enhances drought tolerance in rapeseed primarily by stimulating taproot and lateral 

root growth. Zhang et al. (2013) reported that melatonin only promotes lateral root growth of 

cucumber  under  drought.  The  promotion  of  root  growth  may  contribute  to  stomatal 

re-opening through maintaining plant water potential. Li et al. (2014) found that re-opening 

of stomata may also result from regulation of ABA levels by melatonin. 

 

Our  study  reported  for  the  first  time  the  impact  of  melatonin  on  root  antioxidant 

https://www.researchgate.net/profile/Josefa_Hernandez-Ruiz?_sg=VkigQqKlxQSdsUBWNrvIbGUZ9WcO5_mcBUvu_W8_sNkL-_aAnkuFwGuR12AD4zx_Hk-oM8A.QCpBjNTYiouPwZI0_JmbZvwkK9WVWgvL3G-W128jT9NN72iCCv47b75EuqBDDG910JXhQmact90XKNgzSHHY-Q
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enzymes (SOD, POD and CAT) activity of drought-stressed plants, showing that only the 

activity of CAT was increased by melatonin. Previous studies only reported impacts of 

melatonin on leaves, showing that it can enhance the activity of antioxidant enzymes under 

abiotic stresses, such as cold (Shi et al., 2014), drought (Ye et al., 2016) and salt (Jiang et al., 

2016). Oxidative stress occurs in plants exposed to a variety of abiotic stresses, including 

drought, and might result in peroxidation of essential macromolecules and the disruption of 

cellular redox homeostasis and signalling (Mirzaee et al., 2013). Although MDA and H2O2 

contents  in  roots  were  increased  by  drought  for  both  genotypes  in  the  current  study, 

melatonin  pretreatment  mitigated  the  increase  in  root  MDA  content,  suggesting  that 

drought-induced cellular damage and the subsequent loss of membrane integrity were 

alleviated in pretreated with melatonin. The detected ROS are involved in cellular signaling 

processes and can activate induce many genes and induce proteins involved in stress defense 

mechanisms (Mittler et al., 2004). 

 

Overall, we conclude that melatonin not only plays an important role in enhancing 

drought tolerance at the leaf level, it also regulates root growth (taproot and lateral root) and 

CAT activity in roots to protect rapeseed from drought. Melatonin promotes stomata opening 

(i.e. increases stomatal aperture) and thus enhances gas exchange of the two genotypes. 

Melatonin also promotes lateral root and taproot formation, and enhances CAT activity in 

roots. Hence, melatonin protects oil seed rape from photo-inhibition or photo-oxidation 

induced by drought. The response of melatonin to drought stress may be genotype-specific. In 

our study, the magnitude of mitigating drought stress by melatonin seems to be stronger for 

Qinyou 8 than Q2 as suggested by a higher increase in Pn and decrease in MDA in Qinyou 8 

than Q2 under drought with melatonin pretreatment, compared to drought treatment alone. 

The increase in root growth by melatonin may contributes to the stomatal re-opening. The 

mechanism of the signaling transduction pathway between roots and shoots, induced by 

melatonin under drought stress, requires further investigation. 
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5.   Conclusions 
 

 

For the first time, melatonin effects on gas exchange, chlorophyll a fluorescence and 

stomatal structure in leaves, and the morphological structure and antioxidant enzymes in 

roots of two rapeseed genotypes under drought stress were investigated. Melatonin regulates 

root growth, i.e. promotes taproot and a lateral root growth to absorb moisture from greater 

depth in the soil, and thus promotes stomatal opening (i.e. increases stomatal aperture) 

resulting in enhanced net rate of photosynthesis in the two genotypes. Melatonin increased 

CAT activity, whereas it had no effects on the activities of POD and SOD in the root of 

droughted plants. Pretreatment of oil seed rape with melatonin and subsequent exposure to 

drought stress stimulated the growth of taproot and lateral roots and prevented stomatal 

closure under drought conditions. The findings provide further evidence for a physiological 

role of melatonin and a theoretical basis for melatonin application on improving drought 

resistance   in   agricultural   practice.   Future   studies   should   investigate   the   molecular 

mechanisms of melatonin’s functions and the possible effects of melatonin application on the 

oil yield and appropriate oil compositions of oil seed rape. 
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