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Highlights
Integrated modeling of species

distributions and abundance is

emerging as a powerful tool in

statistical ecology.

Point processes provide a flexible

framework for developing inte-

grated models, combining data

representing the locations of indi-

vidual organisms, local population

abundance, and species–site

occupancy.

These methods provide opportu-

nities to make best use of existing

and new data sources.

We expect that data integration will

underpin the next generation of

models predicting the current,

future, and potential distributions

of species.
With the expansion in the quantity and types of biodiversity data being collected, there is a need

to find ways to combine these different sources to provide cohesive summaries of species’ po-

tential and realized distributions in space and time. Recently, model-based data integration

has emerged as a means to achieve this by combining datasets in ways that retain the strengths

of each. We describe a flexible approach to data integration using point process models, which

provide a convenient way to translate across ecological currencies. We highlight recent exam-

ples of large-scale ecological models based on data integration and outline the conceptual and

technical challenges and opportunities that arise.

Species Distribution Models in Ecology

Large-scale ecological models of how species distributions and abundances vary over space and time

are a critical tool in macroecology, biogeography, and conservation biology. They underpin our un-

derstanding of how biodiversity is shaped, how it is responding to anthropogenic activities, and how

it might change in the future [1–3]. There is now a substantial literature on statistical tools for building

species distribution models (SDMs) (see Glossary) and best practice in how to fit them [4–7]. SDMs

also form a building block upon which more complex models, incorporating occupancy and/or abun-

dance in space and time, can be built [8,9].

The information available for models of species’ distributions is radically changing, thanks to a digital

and technical revolution in data collection [10–12]. New technologies, such as camera traps, miniature

geolocation devices, environmental DNA (eDNA), and passive acoustic monitoring [13–17], are

creating new opportunities for surveying wildlife in space and time. These developments, allied

with initiatives for data mobilization [16–18] and the rapid growth of citizen science [19,20], mean

that ecological data are being generated at an unprecedented rate, in an ever-increasing number

of formats and currencies.
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The Challenge of Data

All these data types are potentially informative about abundance and occurrence of species, and the

processes that drive their dynamics in space and time. However, getting the most from the data rev-

olution is challenging, since datasets are typically designed with a particular goal in mind, such that

different data types have characteristic strengths and weaknesses. Conventional modeling ap-

proaches are each built around the properties of one particular data type; for example, the widely

used SDMmethodMaxEnt [21] is designed to work with presence-only data, while occupancy-detec-

tion models [6] require that observations are replicated in order to estimate detection parameters.

Faced with a plethora of heterogeneous data types, it is now commonplace that more than one rele-

vant dataset is available for any large-scale ecological question. Traditionally, modelers in this situa-

tion would be forced either to ignore any differences in how the datasets were collected or to choose

between them. A common choice is between small quantities of structured data and large quantities

of unstructured data [22]. Structured data derive from surveys with repeatable protocols and/or a

stratified sampling design; these are expensive to collect and tend to be geographically restricted

[23–25]. Unstructured data constitute the majority of available information [e.g., the Global
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Biodiversity Information Facility (GBIF) contains over a billion records] but are affected by numerous

forms of bias [26–28].

An emerging alternative is to integrate the different data sources available into a single model in a

way that retains the strengths of each. Several approaches to model-based data integration have

been proposed [29,30]. In this review, we emphasize a specific formulation that explicitly separates

the biological and data generation processes. We demonstrate how this approach can be applied

to a wide spectrum of data types, spanning haphazard observations and systematic population

counts. This is possible by harnessing a statistical framework that makes the translation between

different types of biodiversity datasets clear mathematically, thus permitting the development of

models to integrate the data.
What Is Data Integration?

The process of bringing together data has many labels, for example, data fusion [31], assimilation

[31,32], combination [33], or integration [34,35]. Their definitions are often context-specific, and

some terms have several meanings [35,36]. Rather than disentangling the semantics, we simply distin-

guish two ways of bringing data together. Data pooling [30] assumes that any disparities between da-

tasets are small enough to be ignored, or are degraded to a lowest common denominator (Figure 1A);

for example, presence–absence data can be degraded into presence-only data in order to combine

with GBIF data in a presence-only SDM. In this way, data pooling employs an observation model that

is common to both datasets, although this is rarely explicit. A second approach – the main focus of

this review – is more flexible as it can accommodate a wider range of data types, we call it integrated

modeling, or model-based data integration (Figure 1B). Integratedmodeling aims to describe explic-

itly the differences in how datasets were assembled, thus retaining the strengths of each and correct-

ing, at least to some extent, their weaknesses. It accommodates the structure and potential biases in

each source while propagating as much information as possible about the species’ distribution.

Model-based data integration is not new to ecology. The field of integrated population modeling

(IPM) has long recognized the benefits of using multiple data sources representing different aspects
Figure 1. Data Integration and Pooling.

Data pooling (A) brings together observations from different sources that could be modeled with a single observation model, ignoring their disparities or

reducing the data to a common denominator. In contrast, data integration (B) uses distinct observation submodels for each data source.
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Glossary
Abundance data: these data may
be in the form of direct counts
(i.e., how many individuals were
observed) or some index of
abundance derived from the raw
counts.
Detection/nondetection data:
term sometimes used to
acknowledge that species pres-
ence/absence is usually imper-
fectly observed. More specifically,
often used for data that are
collected in a way that are infor-
mative about the detection pro-
cess (e.g., via repeat surveys to
sites, multiple independent ob-
servers, times to detection, etc.).
Integrated distribution
modeling: the practice of fitting
species distribution models with
more than one observation
model.
Integrated population modeling
(IPM): the practice of simulta-
neously modeling population
abundance and the demographic
processes driving its variation,
combining multiple sources of
data into a single model (e.g.,
count or census-type data along-
side mark–recapture and ring
recoveries).
Latent state: an unobserved, and
often practically unobservable,
property of the modeled ecolog-
ical system (e.g., the actual distri-
bution or abundance of a species)
that we are trying to estimate.
Link function: a function
describing the relationship be-
tween the observations and the
predicted mean of the latent
state, to ensure that the predicted
meanmeets distributional criteria;
for example, point counts are
usually assumed to follow a Pois-
son or negative binomial distri-
bution via a log link.
Multispecies model: a statistical
model in which some parameters
are shared among species, often
by treating species-specific pa-
rameters as random effects.
Observation model: a statistical
description of the data collection
process. In a standard occupancy-
detection model, the observation
(sub)model characterizes the like-
lihood of detecting the species at
a site where it is present.
Occupancy-detection model: a
class of SDM where the data are
collected so that they are infor-
mative about the detection
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of an ecological process [37–39]. The strength of model-based data integration lies in sharing param-

eters across submodels, which allows demographic parameters to be estimated more precisely than

through independent models, or actually to be estimated at all [37,39,40].

In contrast to IPM, integrated distribution modeling is a new and emerging field [29,41]. In part, this

reflects the fact that integrated distribution models have been largely framed as advances in ecolog-

ical statistics [29,30,42–47] (Box 1). However, we believe it is time for integrated models to leave the

preserve of statisticians, and see greater uptake by ecologists. Data integration is facilitated by un-

derappreciated links between species occurrence, abundance, and point locations of individuals,

which we discuss next.

State-Space and Point Process Models

In species distribution modeling, the task is to use our species observations to infer its actual

geographical distribution (occurrence or abundance at sites). In models that account for the obser-

vation process, this involves two components. While we can generate a statistical description of

the species’ distribution as some function of environmental covariates and/or time. Unfortunately,

the actual distribution cannot be observed directly, it is thus referred to as a latent state. We there-

fore also create a statistical description of how the data were produced using an observation model,

for example, accounting for imperfect detection of the species in an occupancy-detection model [6].

In combination, these two (sub)models form a state-space model. State-space models are hierarchi-

cal, in that observations (i.e., the data) are conditional on the latent state (e.g., assuming it is only

possible to observe the species where it truly occurs).

In state-space terminology, an integrated model can be defined by the existence of multiple obser-

vation submodels for the same latent state. The latent state, and the parameters describing it, are

shared between datasets; alternatives to this joint-likelihood approach may be preferable in some

circumstances [29,30,46,47], but lack the clear logical mapping of Figure 1B. Conceptualizing the

latent state is relatively simple when all observation submodels refer to a common ecological cur-

rency. Examples would be: an occupancy-detection model in which the multiple datasets constitute

survey types with differing sampling effort or errors [48]; or a model of species’ abundance integrating

data from point counts with transect walks. However, it is less clear how to proceed when multiple

data types refer to different ecological currencies (e.g., presence–absence data and counts, related

to occupancy and abundance). Point process models [49] provide a solution that reflects ecologists’

intuitive understanding of how multiple data types can emerge from a single system.

Observation Models for Point Processes

A point process is a statistical description of how points are distributed in space. In an ecological

setting, the points can be thought of as the instantaneous location of individual organisms, or their

activity centers. The number of points within a particular region is the site abundance, and the pres-

ence or absence of points within a region is site occupancy (Figure 2). This general framework thus

encompasses a variety of data types and model structures that are commonly used within the

ecological literature. The ‘process’ that describes the location of points is characterized by an in-

tensity surface that represents density of points within a given area, and defines the latent state.

The intensity is allowed to vary in space, so higher intensity means the species is more likely to

occur at a particular location. For mobile species, the intensity can be interpreted as the distribu-

tion of locations over time. When using point processes in a state-space modeling framework, the

intensity of the point process can be modeled in the conventional manner (e.g., as a function of

rainfall, temperature, etc.).

The simplest situation, conceptually, is one in which the data consist solely of presence-only records

(Figure 2, top row). As an example, consider a survey of plants within a meadow; the resulting data are

point locations where individual plants were observed. Since detection is nearly always imperfect [6],

the observations include only a subset of plants within the meadow. However, if the survey is unbi-

ased, then the locations represent a random sample of the locations where plants actually occur.
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process (e.g., by several repeat
surveys to at least some of the
sampling sites). With such data,
the model can separately estimate
the probability of species’ occur-
rence at a site, and the parameters
driving the observation process,
for example, the probability of
detecting the species where pre-
sent, or the probability that the
species was present at a site
where it was not observed.
Point process model: a statistical
model that describes how points
(e.g., individuals) are distributed
in space. The stochastic process
used for this description has a so-
called intensity, in which points
are more likely to be present at
locations where the intensity is
high. The most common im-
plementation is a Poisson point
process model, which assumes
independence in the location of
individuals, after accounting for
the intensity.
Presence–absence data: records
of whether a species is present or
not at each of a number of sam-
pling locations (e.g., quadrats or
study sites). Detection does not
have to be certain and its proba-
bility can be estimated with oc-
cupancy-detection models if
there are multiple visits to a loca-
tion. This term is often used for
situations where detection/non-
detection data would be more
appropriate.
Presence-only data: records of
the locations where a species was
observed (e.g., from museum
samples). These data lack infor-
mation about where individuals
were not observed, in contrast to
presence–absence data.
Species distribution model
(SDM): generally refers to a sta-
tistical (correlative) model that
relates environmental covariates
to species’ records over a
geographic region. In practice,
SDMs are often fitted to presence-
only data, although are more
robust when fitted to presence–
absence or detection/non-
detection data. SDMs include oc-
cupancy-detection models and
abundance models.
State-space model: a model that
combines a latent state with one
or more observation models that
describe how the data were
generated from this latent state.
Structured data: data derived
from a well-defined sampling

Figure 2. Schematic Representation of How Different Types of Ecological Data and Models Are

Interrelated.

The panels in the left column demonstrate how data in multiple currencies emerge from a common set of

ecological processes. The panels on the right illustrate the kinds of species data that are available to ecologists.

Vertical arrows indicate how different ecological currencies are related to one another; horizontal arrows

indicate types of observation processes by which data are an imperfect representation of the truth, although

most real datasets contain multiple forms of observation error and bias. Abbreviation: SDM, species distribution

model.
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In this case, the observed pattern of points is a thinned-out version of the complete distribution of

individuals, this is called a thinned point process (Figure 2, top row). Unfortunately, in most real data-

sets the thinning is not even and reflects biases in sampling effort, for example, we are more likely to

record individuals that are nearer to major roads or field stations [27]. This sampling bias in

geographic space is particularly a problem if it translates into a bias in environmental space. Ignoring

it could lead to the erroneous conclusion that, for example, the habitat around roads are a species’

preferred habitat. Spatial biases are particularly widespread and problematic in presence-only data

[26,27], and these generally need to be accounted for in the observation model in order to estimate

the true habitat preferences.
Trends in Ecology & Evolution, January 2020, Vol. 35, No. 1 59



protocol, such that observations
are comparable in time and/or
space (i.e., they can be described
by a common observation model).
Note that a structured survey
protocol does not guarantee that
the data are free from spatial bias;
whilst some schemes select survey
sites following a statistical sam-
pling protocol (e.g., stratified
random sampling; the UK
Breeding Bird Survey), others do
not (e.g., most butterfly moni-
toring schemes).
Submodels: components of a hi-
erarchical state-space model. In
the integrated models described
here, there are separate observa-
tion submodels for each dataset
and one state submodel for the
latent state.
Unstructured data: data collected
without formal protocol or sam-
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Structured abundance data require a sampling protocol to ensure that data are comparable across

sites and time. The protocol defines the area within which individuals are observable (e.g., the radius

around a point count or the length and width of a transect), and other aspects, such as how long is

spent observing. The observed abundances in structured surveys can be modeled by assuming that

they follow a Poisson distribution, which arises naturally from a Poisson point processmodel (Figure 2,

middle row) as the number of individuals in an area follows a Poisson distribution whose mean is the

integral of the intensity over that area (e.g., [50]). But observed abundances are often over dispersed

(e.g., if there is variation at a finer scale than is being modeled), which can be modeled either with co-

variates or by assuming extra random variation, though, for example, a negative binomial distribution.

Some survey protocols record only whether or not the species was detected (e.g., recording from a

checklist) within a defined site. These can be viewed as a degraded version of the abundance data;

the data encodes whether there were zero or more than zero individuals observed. These are known

as presence–absence data, although, acknowledging imperfect detection, it is more technically cor-

rect to refer to them as detection/nondetection data. Presence–absence data are typically modeled

as a Bernoulli random variable (Figure 2, bottom row). Under the Poisson point process formulation,

we consider that the underlying number of individuals follows a Poisson distribution and the obser-

vation model defines the probability of observing at least one individual via the complementary log-

log link function [51,52].
pling design, or where the pro-
tocols are unknown. Most un-
structured data are in the form of
presence-only data, for example,
those arising when members of
the public submit records of
wildlife observations.
Discrete Alternatives

The vast majority of the large-scale ecological modeling literature is not based on using point pro-

cesses, but using discrete representations of space, that is, in grid cells. This approach makes sense

for data that are gathered in grids, where the survey protocol samples whole grid cells (e.g., most
Box 1. Case Studies of Integrated Models of Species Distributions

Dorazio [42] presents a (single species) model to combine presence-only records that suffer from sampling bias with

abundance data from systematic surveys, using a point processmodel. The imperfect detection of individuals is esti-

mated from the repeatedpoint counts andmappedback to thepoint processbydescribing the actual abundanceas

a Poisson distribution with mean abundance defined by the point process intensity. The presence-only dataset is

mapped back to the point process by modeling the sampling bias as a function of observation predictors, with

the assumption that what influences observation bias does not influence environmental preferences (Figure IA).

Fithian et al. [43] model the distribution of 36 eucalyptus species in South-Eastern Australia. They combine biased

presence-only recordswithpresence–absencedata fromsystematic surveys. Theybuild amultispeciesmodel linking

both types of data through a common latent point process, assuming perfect detection in the presence–absence

data. The presence-only dataset is mapped back to the point process by modeling sampling bias as a function of

observationpredictors so thatall species are assumed tobeexposed to thesamepatternofbias. Sharing information

across species improves the power to disentangle sampling bias from environmental preferences (Figure IB).

Pagel et al. [44] model spatiotemporal variation in abundance across the geographic range of a butterfly (Py-

ronia tithonus) in Great Britain. They combine structured abundance data (transect counts) with extensive un-

structured presence–absence data (opportunistic species lists). In a hierarchical state-space model, both types

of data are linked to a latent state variable representing abundance within grid cells. Detection in the

presence–absence data is modeled as a function of abundance, made possible by the spatial overlap of the

two datasets. This model enables information on abundance to be extracted from the proportion of species

lists that report the species’ presence in a given grid cell (Figure IC).

Guillera-Arroita et al. [45] model the occurrence of four Australian frog species based on environmental DNA

(eDNA) surveysandaural survey.Their occupancy-detectionmodel considersboth false-negativeand false-positive

errors in the eDNAobservationmodel. Detection parameters are not identifiable from the eDNAdata alone, which

is prone to falsepositives arising fromsample contamination. Toovercome theseproblems, themodel incorporates

calibration data for the eDNA analysis and presence–absence data from repeated aural surveys. Linking additional

survey data to the occurrence state variable constraints alternative parameter solutions and thereby enables the

estimation of false-positive detection probabilities of the eDNA surveys (Figure ID).
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Figure I. Integrated Models of Species Distributions.

(A) Schematic representation of Dorazio’s [42] model.

(B) Schematic representation of the model in Fithian et al. [44].

(C) Schematic representation of the model in Pagel et al. [43].

(D) Schematic representation of the model in Guillera-Arroita et al. [45].

Abbreviation: eDNA, environmental DNA.
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European breeding bird schemes). Discrete space is also an attractive option when it is easy to

conceptualize the observations as a direct realization of the latent state, for example, the latent state

in a typical occupancy-detection model is the presence or absence of species within the whole site (or

grid cells), and the observations (detected or not) are conditional upon the site being occupied [6].

However, constructing models based on discrete space is challenging for integrated models with

data types in different currencies, especially if datasets differ in spatial coverage within the grid cell.

Another characteristic of the grid-based paradigm is that the resolution (i.e., grid size) is fixed, either

constrained by the data or determined by some a priori choice or assumption about the most appro-

priate scale of investigation. This makes the inference scale-specific, since both occupancy and abun-

dance scale nonlinearly with grid cell size, reflecting the fact that individuals are clumped in space

[53,54]. Whilst methods do exist to translate across scales [55,56] and address within-grid heteroge-

neity [57,58], these are not always trivial to implement and can have limited predictive power. Scale

problems become more difficult to manage when attempting to integrate datasets collected at

different spatial resolutions, or from different locations within a grid cell [43]. This is a special case

of a problem known in spatial statistics as ‘change-of-support’, for which promising solutions have

recently been developed in the context of integrated distribution models [47].

Point processes provide a natural way of dealing with scale dependence, at least in the observed

data, because the intensity of the point process (the latent variable) can vary in continuous space,

which is natural to assume for ecological data. It is therefore relatively straightforward to make infer-

ences at multiple scales from a single model [29]. For small regions, such as a few hectares within the

range of a continentally distributed species, we can assume a constant (i.e., point) intensity, and the

expected number of individuals within this region is the intensity multiplied by the area. For larger

areas, the expected number of individuals is derived by integration of the intensity over the region

(or a numerical approximation thereof [59]).

Note that the distinction between grid-based and point process models is not always obvious, in

particular when environmental covariates are available on a spatial grid; for example, MaxEnt is pre-

sented to the user as a model in discrete space, although it is mathematically equivalent to a point

process model under some circumstances [60].
Implementation

For grids, the development and fitting of distribution models is a mature process; each grid cell can

be considered on its own, and themain complication is usually whether spatial autocorrelation should

be accounted for [61]. Integrating multiple datasets becomes complicated when issues of scale have

to be considered, in which case including spatial autocorrelation may be essential to share informa-

tion across datasets [29,46]. In practice, many implementations have been developed in a Bayesian

framework, because this simplifies the integration of data and the handling of uncertainty. Bespoke

models can be developed using the BUGS language and its derivatives, which are flexible enough to

allow inclusion of the latent state in several likelihoods. Thus, Markov chainMonte Carlo (MCMC) soft-

ware, such as WinBUGS [62] and JAGS [63], can be useful to fit these models, but they can be slow to

sample and converge, especially for large and complex models in which parameters are strongly

correlated. Newer MCMC software, such as Stan [64] and greta [65], are potentially much quicker,

but few comparisons for large ecological datasets exist. Frequentist implementations are also

possible for specific model formulations, as in IPM [37].

Several methods exist to fit point processes to data [66]. With multiple data types, Bayesian methods

once again appear more attractive, but again the computational cost may be high. Recent develop-

ments in computational statistics have improved the situation; for instance, accurate numerical ap-

proximations of the posterior distribution have been developed [59,67]. These approximations

have been combined with efficient methods for approximating the continuous space in the INLA soft-

ware [67,68], which makes it possible to fit many complex ecological models efficiently using point

processes [59], although this efficiency comes at a cost of less flexibility in what models can be fitted
62 Trends in Ecology & Evolution, January 2020, Vol. 35, No. 1
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compared with MCMC approaches. In addition, whilst it can be challenging to specify state-space

models in INLA, we show in Box 2 how this can be done.
Challenges and Opportunities

Development of data integration for large-scale ecological models has recently advanced both

conceptually and practically. There is now an emerging literature of large-scale ecological models us-

ing data integration. Box 1 describes how four recent examples, all of which integrate across two da-

tasets with different observation models, fit within the general framework described previously. As

the availability of new data types grows, data integration will be an option for the majority of

large-scale ecological modeling applications, so we anticipate that it will become routine for ecolo-

gists working at large spatial and temporal scales. The real power of data integration, however, be-

comes apparent when linking datasets where the observationmodels are too dissimilar to permit sim-

ple data pooling without losing substantial information (Figure 1), for example, using expert-drawn

range maps [69,70].

Data integration increases the quantity of available data and makes it possible to translate across

ecological currencies (e.g., using occurrence records to make inferences about abundance [40]). It

also opens up opportunities to expand the scope of the investigation; for example, integrating struc-

tured datasets with unstructured presence-only data, such as those on GBIF, may allow for an estima-

tion of species distributions beyond the extent of the structured dataset. Similarly, the temporal

extent can be expanded by addingmuseum specimens or paleontological data (e.g., from lake cores)

to contemporary observations. However, modeling across different extents raises questions about

compatibility, for example, does integrating a small but highly structured dataset from Wales with

a large unstructured dataset spanning Europe help us understand what is happening in Belgium?
Box 2. Case Study of Data Integration

Integrated distribution models are difficult to specify and challenging to fit. Making them more accessible re-

quires tools that are general and flexible enough to fit different observation model types. Here, we demon-

strate data integration in a point process model.

Our case study is the black-throated blue warbler (Setophaga caerulescens), which Miller et al. [29] used to

compare data integration approaches using BUGS. We demonstrate the joint-likelihood approach using

INLA [67,68], which is well suited to model spatial point processes and is more computationally efficient

than BUGS.

The species’ true distribution is modeled as an inhomogeneous point process, whose intensity varies as a func-

tion of elevation, canopy cover, and a random spatial field. We use three data sources, each with a different

observation process (Figure IA): eBird records, North American Breeding Bird Survey (BBS) data, and the sub-

set of the Pennsylvania Breeding Bird Atlas (BBA) used by Miller et al. (Figure IB). We treat eBird data as pres-

ence-only records, emerging as a thinned version of the intensity surface, with human population density as a

covariate on the observation process (i.e., records are more likely where people live). We use a simplified

version of the BBS data, treating the 50-point samples as a replicate presence–absence data per site (known

as ‘routes’ in BBS). We treat the BBA data as presence–absence and assume that the sites for all datasets

are small enough to be represented as points. Each dataset has its own likelihood, with the true distribution

as the (common) latent state.

The fitted model (Figure IC) integrates three datasets with different properties to produce a single distribution

map accounting for variation and bias in sampling effort. A more complete analysis would need to verify that

the species’ distribution is reflected in covariates, rather than the random spatial field (which reflects unmod-

eled spatial autocorrelation). The observation model for eBird data could be refined to properly reflect the

observation bias that generated it, for example, using an additional spatial field [44].

The core challenge of integrated distribution modeling is to ensure that the covariates and observation data-

sets are properly aligned. Functions to manipulate the data into a common format, and to fit themodel in INLA,

are available online [79]. Whilst preliminary, the model illustrates the potential of this framework. The code pro-

vided should be readily extensible to include other data types, and transferable to other systems.
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Figure I. Integrated Model for Setophaga caerulescens in Pennsylvania.

(A) Schematic representation of the integrated model (see Figure 2 in main text). (B) Map showing the

distribution of source data. (C) Fitted distribution, derived from the integrated model in (A). The scale bar

indicates the log of the intensity of the point process, such that light shades indicate a higher probability

that the species is present. Abbreviations: BBA, Pennsylvania Breeding Bird Atlas; BBS, North American

Breeding Bird Survey.

Outstanding Questions

When should complex integrated

models be preferred over simple

ones? Data integration has many

advantages but is costly (e.g., in

computational intensity). Do

parameter-rich integrated models

improve our ecological under-

standing? We need clear guide-

lines on when data integration is

better than data pooling or dis-

carding one dataset.

How do we quantify information

gained by data integration? Infor-

mation criteria (e.g., AIC, BIC) are

not comparable between models

with different sets of observations,

so it’s not obvious how to measure

the added value of integrated

modeling.

Under what circumstances does the

joint-likelihood approach break

down? This approach is conceptu-

ally appealing but performs poorly

under certain conditions [29,30].

Understanding this trade-off

should be a priority.

Can we be confident about working

with biased data? How much struc-

tured data is enough to overcome

bias in unstructured data? Can we

detect biases if we don’t know

about them a priori? How should

we evaluate whether biases have

been adequately modeled? Is it

possible to fit integrated models

in which all datasets contain at least

one form of bias?

How should we validate integrated

distribution models? Model fit and

prediction error are likely to be

influenced by data quantity, qual-

ity, and the degree to which we

capture biases. Moreover, the

notion of ‘fit’ is not straightforward

when there are multiple sets of ob-

servations, some of which contain

known biases. Independent valida-

tion (e.g., test and training data-

sets) is at odds with the principle

of using all available data, which

has been an important motivation

for integrated modeling. Guide-

lines for validation have been

couched in terms of whether the

contributing datasets should be
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Although the ecological processes in Wales and Belgium may be different [71], the hope is that any

differences will be captured by the dataset common to both countries. Exploring validity of these as-

sumptions would be amenable to simulation studies, and these should be a priority for future

research (see Outstanding Questions).

Prior to data integration, onemust query the value of combining data. The choice between structured

and unstructured data is typically seen as one between quality and quantity [22,26,72–74]; structured

datasets are high quality but rare, whereas unstructured data are now plentiful but may contain

biases. Most biodiversity data are in the form of unstructured records, so although using these

data alone is attractive, the potential for bias means we may be on thin ice regarding the validity

of predictions obtained from them [75,76]. Integrating structured with unstructured data has been

shown to produce model parameter estimates that are both precise (on account of large sample

sizes) and accurate (on account of the unbiased sample in the structured data) [42,44]. In other words,

integrated models tend to inherit the best properties of the constituent datasets, not the worst. How-

ever, it is not clear whether this situation will be universally realized, for example, if bias in the unstruc-

tured data is small, there may be little to be gained (in terms of parameter estimates) by the addition

of structured data, such that the complexity of an integrated model might not be justified. These is-

sues become more challenging when all available datasets contain at least one form of bias. Can we

adequately characterize each? It is conceivable that the act of integrating datasets could introduce

new biases not found in the constituent datasets, such that the integratedmodel is ‘worse’ than either
64 Trends in Ecology & Evolution, January 2020, Vol. 35, No. 1



considered equals, but this is not

always obvious [29]. Several ap-

proaches to validation have been

proposed (e.g., [40]) so there is a

clear need to understand which of

these works, under what circum-

stances, and how to apply them

objectively.
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data pooling or proceeding with a single dataset. These new biases may be hard to detect, adding

black ice to the thin ice of working with biased data [75,77]. Thus, it might be difficult to predict a priori

whether data integration will be desirable for any particular application. Careful simulation studies

might help with the development of some principles for when data integration is worthwhile.

Concluding Remarks

The digital revolution has given us access to a growing volume of data about species, from a wide

range of sources. We are making strides in developing methods to use these data, and are moving

from ad hoc solutions for individual problems towards fully fleshing out a framework, based on point

processes, to tackle a wide range of problems. These statistical advances need to be made readily

available to ecologists, through the development of flexible and easy to use software. At the same

time, conceptual and practical issues need to be addressed, such as exploring when data integration

is worthwhile and how far we can go to combine different datasets. The potential that can be un-

leashed by solving these issues is huge; the biodiversity crisis is global [78], but so is the collection

of biodiversity data, through the work of many local actors [17,18]. It is only by bringing together

all of this effort that we can effectively use these disparate data in a coherent manner. The develop-

ments we have outlined should thus become the norm rather than the exception when investigating

biodiversity over large spatial and temporal scales.
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