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Abstract: Coal seam gas, held within the inner pores of unmineable coal, is an important energy
resource. Gas release largely depends on the gas seepage characteristics and their evolution within
granular coal. To monitor this evolution, a series of experiments were conducted to study the effects
of applied compressive stress and original grain size distribution (GSD) on the variations in the
gas seepage characteristics of granular coal samples. Grain crushing under higher stress rates was
observed to be more intense. Isolated fractures in the larger diameter fractions transformed from
self–extending to inter-connecting pathways at a critical compressive stress. Grain crushing was
mainly caused by compression and high-speed impact. Based on the test results of the original
GSD effect, the overall process of porosity and permeability evolution during compression can be
divided into three different phases: (1) rapid reduction in the void ratio; (2) continued reduction in
the void ratio and large particle crushing; and (3) continued crushing of large particles. Void size
reduction and particle crushing were mainly attributed to the porosity and permeability decreases that
occurred. The performance of an empirical model, for porosity and permeability evolution, was also
investigated. The predictive results indicate that grain crushing caused permeability increases during
compression, and that this appeared to be the main cause for the predictive values being lower
than those obtained from the experimental tests. The predictive accuracy would be the same for
samples under different stress rates and the lowest for the sample with the highest proportion of
large grain diameters.

Keywords: gas permeability; granular coal; porosity; stress rate; grain size distribution;
grain crushing

1. Introduction

Coal seam gas, held within the inner pores in unmineable coal, is an important energy resource.
However, as shown in Figure 1, longwall mining may commonly form four zones of disturbance
after disturbing the overlying strata of a coal seam [1]; this makes the coal seam gas within the coal
be rapidly released into the gob. Gas releases from coal during mining not only causes engineering
accidents (gas outbursts, coal and gas outburst, etc.) [2,3], but also contributes to global warming
by the greenhouse effect [4]. The permeability increased by up to three orders of magnitude in the
fractured (caved) zone and is usually several orders of magnitude greater than that of the intact coal [5].
Such a high permeability in coal threatens the normal storage and transport of gas within the coal
seam [6].
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Significant experimental, numerical, or theoretical methods were conducted to understand
the properties of granular coal, such as density, ash, and particle size effects on the fixed
characteristics [7–11], coal particle moving [12], fragmentation behavior [13], coal combustion [14],
etc. Adánez et al. [7] conducted a series of experiments and proposed an equation to evaluate the
transport velocities of sand and coal particles. For coal blocks having larger particle diameters, the gas
desorbs from its micropores, diffuses into macropores, and then seeps under a pressure gradient [15,16].
Hu et al. [17] experimentally and numerically investigated the scale effects and formation mechanism
of gas releases from coal particles, and a bidisperse diffusion model was established to predict the
experimental results; they found that the scale effects of gas releases from coal are controlled by the
multi-scale pore structure of coal. In studies conducted using coal core samples as opposed to granular
coal, it was found that under constant total stress conditions, the permeability for adsorbed gases
increases when the pore pressure is reduced due to coal swelling [18–20], and decreases with increasing
pore pressure due to matrix shrinkage [21].

Gas permeability is also influenced by fracture geometry [6,22], fracture geometry and
water-content [23], and the presence of water [24]. The permeability evolution of granular coal was
tested and the particle size [25] and temperature [26] were proven as affecting factors. According to
the experimental studies of different rocks [27,28], altered permeability strongly relates to the original
particle size distribution. It is clear that the seepage characteristics of granular coal are highly affected
by the stress condition and granular size distribution. In order to understand the impact on seepage
characteristics evolution, we first present the test coal samples and experimental equipment in Section 2.
The details of the testing procedure and measurement principle for porosity and permeability evolution
are given in Section 3. Section 4 analyses the test data for the compressive stress state and grain size
mixture effect on the seepage characteristics and particle crushing during compression, and builds
a model for porosity and permeability prediction.
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Figure 1. Overburden strata and granular coal distribution above a longwall panel [1]. 
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mm, and <0.25 mm. These groups were mixed according to the well-known Fuller equation in 

Equation (1) [29] to produce several different particle gradings. 

Figure 1. Overburden strata and granular coal distribution above a longwall panel [1].

2. Granular Coal Samples and Testing Equipment

2.1. Preparation of Granular Coal

Lightly weathered coal blocks were taken from the coal seam No. 2 of the Yuheng coal field in
Yulin City of China. The dry density of the coal blocks was ρc = 1.65× 103kg/m3. The coal blocks
were first hammered into particles of less than 20 mm diameter. The granular coal particles were then
separated into seven size ranges: 20–15 mm, 15–12 mm, 12–10 mm, 10–8 mm, 8–5 mm, 5–2.5 mm,
and <0.25 mm. These groups were mixed according to the well-known Fuller equation in Equation
(1) [29] to produce several different particle gradings.
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pj =
(
dj/D

)n × 100% (1)

where j is the size range of the granular coal, and its maximum value is 7 according to the sample
preparation; D is the largest grain diameter, and D = 20 in this test; dj is the largest grain diameter in the
range of j sample; pj is the mass ratio of the size range of the j sample; and n is the control parameter
of the grain size distribution (GSD) for the sample, and then the seven granular ranges are mixed by
n = 0.4, 0.7, 1, 1.3, and 1.6, respectively. The GSD curve for the five mixtures is shown in Figure 2.
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2.2. Sample Arrangement

The gas adsorbate used was N2, with a bulk gas density of ρg = 1.16 kg/m3 and kinetic viscosity
of µg = 1.76 × 10−5 Pa·s under laboratory conditions (25 ◦C at 100 kPa). As shown in Figure 3 and
Table 1, in Test 1, samples (a, b, and c) were used to monitor the effect of the compressive stress
rate on the seepage characteristics; their size mixtures were the same, i.e., n = 1; the stress rate for
paths OA, OB, and OC were 0.01 kN/s (sample a), 0.02 kN/s (sample b), and 0.04 kN/s (sample c),
respectively, and the corresponding loading times were t1, t2 and t3. According to the in-situ conditions
of the Yuheng coal field, the buried depth z of the coal seam is about 320 m, based on σ = γz = ρsgz,
where ρs ≈ 2500 kg/m3 is the density of overburden strata. Therefore, the compressive stress σ was
set as 8 MPa, where t1 = 2t2 = 4t3. In Test 2, samples (d, e, f, g, and h) were used to monitor the
original GSD effect; their loading paths were the same, i.e., the stress rate was 0.02 kN/s; the original
GSD for samples d, e, f, g, and h were n = 0.4, 0.7, 1, 1.3, and 1.6, respectively. The compressive stress
of 8 MPa was achieved at t2.
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Table 1. Stress rate and mass distribution of the particle size arrangement of each sample.

Test
No.

Sample
No.

Stress
Rate

(kN/s)

Particle Mixtures
(n in Equation (1))

Weight to Each Particle Size (g)

20–15
mm

15–12
mm

12–10
mm

10–8
mm

8–5
mm

5–2.5
mm

2.5–0
mm

1
a 0.01

1 300 180 120 120 180 150 150b 0.02
c 0.04

2

d

0.02

0.4 130.4 91.3 68.8 77.7 142.6 166.9 522.3
e 0.7 218.9 141.9 100.6 106.8 177.1 174.8 279.9
f 1 300 180 120 120 180 150 150
g 1.3 374.4 207.9 130.3 122.7 166.7 117.5 80.4
h 1.6 442.7 227.4 134.1 118.9 146.4 87.5 43.1

2.3. Testing System Design

The in-house testing system principle of operation is illustrated in Figure 4. The gas seepage
testing box produces only a 5% pressure drop for a 5 MPa gas per 10 min. MTS815.02/286.31 [30] was
used to provide the compressive stress for controlling the height of the coal sample (G4). In the gas
seepage apparatus, a loading plate (G1) was utilized to maintain the compressive stress. Porous disks
(G6) and (G9) enable the gas to seep freely. An epoxy resin separation layer (G11) separates the
coal specimen (G4) and the vessel (G12), and prevents annular gas seepage. The triaxial base of the
system and cylinder tube are connected by a one–way valve, which includes the base plate (G7),
valve chest (G8), mechanical bolt (G14), mechanical spring (G15), and valve core (G16). O–rings (G2)
and (G13) were utilized to enclose the gaps between the piston (G3) and the vessel (G12), base plate
(G7), and valve chest (G8).
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Figure 4. Testing principle of gas permeability of the granular coal. Note: G1—loading plate;
G2,G13—O–rings; G3—piston; G4—granular coal sample; G5,G10—felt pad; G6,G9—porous disk;
G7—base plate; G8—valve chest; G11—epoxy resin separation layer; G12—vessel; G14—mechanical
bolt; G15—mechanical spring; G16—valve core; M1—gas in; M2—accumulator; M3—gas out;
and S1–S5—switch.

3. Measurement Principle and Testing Procedure

3.1. Porosity Measurement

As shown in Figure 5, based on the vessel height Ha (180 mm), the deviator height Hb (110 mm),
the porous disk thickness Hc (9 mm), the felt pad thickness Hd (2 mm), Hei was the height of the
deviator that exceeds the vessel at compressive stress σi.
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The value Hei at compressive stress σi can be measured by linear variable displacement
transformer (LVDT) during loading. Therefore, the porosity φi at each sample height Hi at compressive
stress σi can be calculated by Equation (2):

φi = 1− m
πr2ρcHi

= 1− m
πr2ρc(Hei + 48)

(2)

where m and ρc are the mass and density of the granular coal sample, respectively, r is the radius of
the cylindrical tube, which in the test was r = 50 mm. The porosity variation at compressive stress σi
was calculated by Equation (3):

∆φi = φi−1 −φi (3)
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3.2. Permeability Measurement

For Darcy seepage, Equation (4) describes the relation between the pore pressure gradient ∂p/∂h
and the gas seepage velocity v:

− ∂p/∂h = µgζ
−1v (4)

where p is the pore pressure, h is the vertical axis going through the center of the sample, µg is the gas
kinetic viscosity, and ζ is the permeability of the granular coal. The Darcy equation (Equation (4)) can
be used to model the gas flow in the granular coal sample, which is further verified by the Reynolds
number (Re) [31]:

Re =
ρgvdφi

µg
(5)

where d is the characteristic size, and for the non–consolidated granular coal sample, d is the average
diameter of the grains, while for the consolidated granular sample, d is the average value of the
capillary diameters. Darcy flow follows if Re is lower than 10 [32].

In this test, the gas flux and pore pressure are all measured for the calculation of the seepage
characteristics. When gas compressibility was considered, we assume pin, ρin, and vin were the pore
pressure, gas density, and velocity at the intake boundary (gas in), respectively. The downstream end
was connected to the outtake boundary pout, ρout, and vout (gas out), respectively.

The gas equation of state is:
p = ρgRT (6)

where, R is the universal gas constant and T is the temperature of the sample.
The continuity equation is:

Qg = ρg Av (7)
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where Qg is the gas mass flow rate, ρg is the gas density, A is the cross-sectional area of the sample,
and A = πr2 in this test.

For simultaneous Equations (6) and (7), we have:

v =
QgRT

A
1
p

(8)

Substituting Equation (8) into Equation (4), we have:

− ∂p
∂h

=
µg

ζ

QgRT
A

1
p

(9)

Let c1 =
µg
ζ

QgRT
A = pv

µg
ζ , then integrate Equation (9), to obtain:

1
2

p2 = −c1h + c2 (10)

Substitute the boundary condition p = pin when h = 0 into Equation (10), and we obtain
c2 = 1

2 p2
in. Then,

p2 = p2
in − 2pvµgζ

−1h (11)

Therefore, the permeability ζi at each sample height Hi at compressive stress σi can be
calculated by:

ζi =
2pi−invi−inµg Hi

p2
i−in − p2

i−out
(12)

where pi−in and vi−in are the pore pressure and gas velocity at the intake boundary (gas in), and pi−out
is the pore pressure at the outtake boundary (gas out) at the compressive stress σi. That means the
permeability ζi can be calculated by testing pi−in, vi−in, and pi−out at the compressive stress, σi.

3.3. Testing Procedure

The experimental testing strictly observed the following procedural steps:

(1) Regulate the initial height (porosity) of granular coal as a designed value before loading.

At the initial stage, the specimen height was set at 110 mm, which means the initial height
H0 = 48 + He0 = 130mm. Therefore, the initial height He0 was fixed as 82 mm. Based on Equation (2),
the initial porosity of each sample was φ0 = 0.288.

(2) Apply and maintain the compressive stress and gas pressure to the sample.

As shown in Figure 3, in test 1, we applied the stress rate in paths OA, OB, and OC as 0.01 kN/s
(sample a), 0.02 kN/s (sample b), and 0.04 kN/s (sample c), respectively, and the gas in pressure at the
intake boundary was fixed at 0.600 MPa; in test 2, we applied the stress rate in path OB as 0.02 kN/s
(samples d, e, f, g, and h), the gas in pressure at the intake boundary was also fixed as 0.600 MPa.

Meanwhile, the compressive stress and gas pressure were applied to the coal sample and kept
steady until the completion of step 3. In this step, the displacement of the coal sample could be
measured by the LVDT sensors. The porosity and its variation at each time interval could be calculated
by Equations (2) and (3). Meanwhile, pi−in = pin was fixed at 0.600 MPa, and the vi−in and pi−out
measurement values were used to calculate the permeability based on Equation (12).

(3) The test was ended when the compressive stress met the designed value.

The final compressive stress for each test was fixed as 8 MPa, based on Equation (13):

dσ/dt =
dF/dt
πr2 (13)
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where, r = 50 mm, and dF/dt for the samples (a, b and c) were 0.01 kN/s, 0.02 kN/s, and 0.04 kN/s
respectively, therefore the time to close the test was t1 = 2t2 = 4t3 = 6280 s.

The entire test procedure is shown in Figure 6. To check the repeatability and maintain accuracy
during the test, each coal sample was recorded as the mean average of three repeat tests.
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4. Testing Results and Discussion

In Kong’s research [31], the upper limit of Re suitable for the Darcy law was 10 and for different
porous media this limit is slightly different. We calculated the Re according to Equation (5) to prove that
the Darcy equation (Equation (4)) can be used to model the gas flow in granular coal samples. Sample (a)
was taken as an example; the average diameter d50 was 10 mm at the initial stage and it will decrease
during crushing. Therefore, Re can be calculated based on Equation (5) by considering d50 = 10 mm.
As shown in Table 2, the porosity, gas in flow rate, gas out pressure, Re, and permeability were
calculated. The maximum Re for sample (a) is 8.095, which is lower than 10 and Darcy flow follows.

Table 2. Re and permeability test results of sample (a).

Compressive
Stress (MPa)

Sample
Height (mm) Porosity Gas in Flow

Rate (mm·s−1)
Gas Out

Pressure (MPa) Re Permeability
(µm2)

0 130 0.288 42.689 0.587 8.095 7.488
1 111.9 0.173 32.902 0.553 3.751 1.422
2 106.6 0.131 19.366 0.531 1.674 0.557
3 104.5 0.114 24.573 0.553 1.851 0.717
4 103.1 0.102 17.528 0.498 1.181 0.341
5 102.1 0.093 10.909 0.462 0.671 0.161
6 101.4 0.087 9.152 0.455 0.521 0.128
7 100.8 0.081 4.461 0.476 0.238 0.071
8 100.3 0.077 3.469 0.129 0.175 0.021

4.1. Effect of Stress Rate on the Seepage Characteristics Evolution

4.1.1. Effect of Compressive Stress Rate on the Porosity and Permeability Evolution

The porosity–compressive stress curve and porosity variation–compressive stress curve for
samples (a, b and c) are presented in Figure 7, based on Equations (2) and (3), respectively. Figure 8
illustrates the relationship between the permeability evolutions of samples (a, b, and c). It can be
seen from these figures that in general the porosity, permeability, and void space all decrease during
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compression. At the same compressive stress, the porosity and permeability of coal samples under
higher stress rates appear larger, which means the porosity and permeability decrease to a lesser
degree. Compared with the porosity and permeability at the beginning (compressive stress: 0 MPa),
the final porosity (compressive stress: 8 MPa) of samples (a, b, and c) decrease by 73.37%, 55.54%,
and 44.35%, respectively. The corresponding final permeability values were 0.021 µm2, 0.751 µm2,
and 1.616 µm2, respectively, where the value of sample (c) is almost two orders of magnitude greater
than that of sample (a).
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Figure 7b shows that the porosity variation decreases during compression, due to a progressive
reduction in void diameter. Four MPa appeared to be the critical compressive stress for porosity
variation, and the porosity variation for sample (a) was larger than that for the other samples before
the critical compressive stress, which means that the voids in sample (a) were wider than those in the
other samples. The porosity variation as well as the void diameter in the three samples was almost the
same at the critical compressive stress.

As shown in Figure 8, the permeability under the larger stress rate has higher values due to the
sample being subjected to a larger stress rate. This most likely occurs because the compressive stress
causes a greater degree of closure of the void space. However, there were some abnormal increases in
permeability at the critical compressive stress. As seen in Figure 8, the critical compressive stress for
samples (a, b, and c) was 2–3 MPa, 4–5 MPa, and 5–6 MPa, respectively, with a corresponding porosity
of 0.13–0.11, 0.15–0.14, and 0.18–0.17. At the critical compressive stress, isolated fractures in the larger
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grain size sample achieved the transformation from self–extension to inter-connection, which increases
the permeability rapidly.

4.1.2. Effect of Stress Rate on the Grain Size Distribution after Crushing

A re-distribution of particle sizes was observed after testing. Using sieve analysis, the GSD was
determined as shown in Table 3, and the variation is shown in Figure 9, compared with the original
GSD (Test 1) in Table 1. The mass of <5 mm diameter grains was increased due to attrition of the
particles in the 5–20 mm range. The mass of the size fraction 20–8 mm decreased, but increased for the
<5 mm size fraction, when at a lower stress rate. The fraction of particles in the 8–5 mm size range
reduced for samples (a and b) but increased for sample (c); which indicates that particle crushing could
be occurring by compression and fracture.
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Table 3. Mass distribution of particle size after testing under variable stress rate.

Sample
No.

Stress Rate
(kN/s)

Weight to Each Particle Size (g)

20–15 mm 15–12 mm 12–10 mm 10–8 mm 8–5 mm 5–2.5 mm 2.5–0 mm

a 0.01 208.1 123.3 89.5 102.2 168.2 229.9 278.8
b 0.02 243.2 142.8 109.8 114.6 173.2 194.4 222.0
c 0.04 268.9 156.7 101.3 113.5 193.3 182.4 184.0

4.2. Effect of Original Grain Size Distribution on the Seepage Characteristics

4.2.1. Effect of Original Grain Size Distribution on the Porosity and Permeability Evolution

The porosity–compressive stress curve and porosity variation–compressive stress curves (for
variable size mixtures) are presented in Figure 10. The overall permeability–compressive stress
(through porosity) curves presented in Figure 11a–c show the permeability–porosity curves and the
permeability–compressive stress curves after 2 MPa. The overall process of porosity and permeability
evolution during compression can be divided into three different phases: rapid reduction in the void
ratio, continued reduction in the void ratio and large particle crushing, and continued crushing of the
large particles.

The first phase involves the rapid reduction in the void ratio during which the porosity and
permeability decrease by up to 40% (Figure 10a). When the compressive stress is less than 3 MPa during
compression, the porosity of the samples with a higher proportion of larger particles (e.g., 20–10 mm
diameter) appears to be larger. This suggests that their porosity and permeability decrease by a smaller
amount, which is most likely due to the lower efficiency in particle packing.
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The second stage occurs when void shrinkage continues, and crushing of the larger particles
begins during which the largest particles (e.g., 20–15 mm diameter) were crushed during compression.
This occurred when the compressive stress was between 3 and 5 MPa. The porosity in sample (h)
decreased rapidly (see Figure 10a) whilst its porosity variation was larger than that of the other samples
(see Figure 10b). This indicates that the largest particles (e.g., 20–15 mm) in sample (h) were crushed at
a faster rate.

The third stage of porosity evolution involves continuous crushing of the large particles. It can
be seen from Figure 10b that the rate of change in porosity decreases during compression. The rate
of porosity decrease was reduced with progressive compression due to the monotonous decrease in
the void diameter. Five MPa was the critical compressive stress for alteration of both the porosity
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(Figure 10b) and permeability (Figure 11c). Porosity alteration for sample (f) was at a minimum after
the critical compressive stress, which means that the inter-particle pore diameter was at its smallest
value. Furthermore, the bulk porosity of each sample was almost the same as the critical compressive
stress (5 MPa), when compared with the porosity at the critical compressive stress. The porosity
at a compressive stress of 8 MPa was lower for samples having a higher fraction of large particle
diameters. The porosity and permeability of sample (f) were at their maximum; this means that the
porosity decrease is mainly contributed by particle crushing in the last phase.

To summarise, the original GSD was a key factor for determining both the porosity and
permeability evolution during compression. The average reduction of porosity in the first two
phases was 48%, but in the third phase was only 8%. It appears that the inter-particle porosity
between smaller diameter particles was more prone to volume reduction than for the larger particles.
Larger particles were more prone to crushing, which led to significant decreases in porosity in the
third phase of compression.

4.2.2. Effect of Original Grain Size Distribution on the Post-Crushing Grain Size Distribution

Table 4 shows the typical GSD after testing and their variation is shown in Figure 12, compared
with the original GSD (Test 2) in Table 1. The mass of the <5 mm size fraction was increased
after compression for each sample. However, the mass of the 20–8 mm size fraction was reduced.
During compression, larger grains (e.g., 20–8 mm) were broken into smaller sizes, which caused the
mass of the <5 mm size fraction to increase. Furthermore, the 20–15 mm size fraction decreased the
most and this was attributed to larger particles being more easily crushed during compression. This is
why the critical compressive stress for sample (h) shows a minimum value in Figure 11c. Samples with
a higher proportion of larger diameter particles showed a larger decrease in the mass of the 20–12 mm
size fraction and an increase in the <5 mm size fraction. The fraction of particles in the 8–5 mm size
range increased for samples (d and e), but reduced for samples (f, g, and h).
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Table 4. Mass distribution of the particle size after testing with the variable original GSD.

Sample
No.

Particle Mixtures
(n in Equation (1))

Weight to Each Particle Size (g)

20–15 mm 15–12 mm 12–10 mm 10–8 mm 8–5 mm 5–2.5 mm 2.5–0 mm

d 0.4 98.3 77.4 65.2 72.4 156.0 185.4 545.3
e 0.7 163.2 125.7 83.2 97.3 182.5 203.2 344.9
f 1 243.2 142.8 109.8 114.6 178.2 194.4 217.0
g 1.3 305.8 165.2 113.2 112.8 162.7 185.4 154.9
h 1.6 301.2 173.9 118.2 103.7 135.3 213.5 154.2
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4.3. Porosity and Permeability Prediction during Testing

Due to the general lack of published data on the evolution of permeability and porosity for
granular coals, it is common practice to predict the permeability and porosity using an empirical
equation and some very limited experimental data. Chilingar [33] defined the relationship between
porosity and permeability in porous media (sands and sandstones) as:

ζi =
d2

eφ
3
i

72(1−φi)
2 (14)

where, de is the effective diameter of grain sizes. According to Equation (14), we obtain:

ζi
ζ0

=

(
φi
φ0

)3(1−φ0
1−φi

)2
(15)

where, φ0 is the initial porosity and ζ0 is the initial permeability. The test and predictive data of
permeability were shown in Figure 13. A simple statistical efficiency criterion was used to analyze the
model performance in Equation (15), based on the coefficient of determination factor R2:

R2 =
∑l

i=1 (ζ
t
i)

2 −∑l
i=1 (ζ

t
i − ζ

p
i )

2

∑l
i=1 (ζ

t
i)

2 (16)

where l is the total number of test data, l = 9; ζt
i is the experimentally tested value, and ζ

p
i is the model

prediction associated with a test. The results of the R2 values for different test samples are shown in
Figure 14.
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and (b) original GSD.

It can be seen from Figure 13 that by using Chilingar’s empirical equation, the calculated
permeability values are typically lower than those obtained from the experimental tests in this study.
This could indicate that particle crushing caused a permeability increase during compression. However,
as shown in Figure 14, the R2 values in all samples were higher than 0.90, which indicates a high
degree of linear correlation. Therefore, the application of effective porosity (fracture) in seepage for
the prediction of permeability variations can yield sufficiently accurate results. The R2 was almost
the same for samples (a, b, and c). This is perhaps because the test time had no predictive error effect.
Furthermore, a greater mass of larger diameter particles were crushed. A comparison of the predicted
results corresponding to the experimental data for samples with variable GSD shows that the R2 value
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for sample (h) was the lowest (0.906), suggesting that a greater mass of larger diameter particles led to
a higher proportion of crushed fines, giving greater pore volume reduction and altered permeability.Energies 2017, 10, 527 13 of 15 
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5. Conclusions

In a series of experiments, the effects of applied compressive stress rates and original GSD
(Figure 3) on the variations of the seepage characteristics of granular coal were investigated through
experimental measurements. From the experimental observations and corresponding analyses,
the following main conclusions could be drawn:

In general, gas seepage characteristics (i.e., altered porosity and altered permeability) are
strongly influenced by the variable stress rate of the sample. Both porosity and permeability of
granular coal decrease during compression. As samples under a higher stress state require a shorter
duration of compression before fracture, the porosity and permeability decrease is incrementally
smaller. Further reductions in porosity are more difficult to achieve with monotonously increased
compressive stress. Samples under high stress states experienced a greater degree of particle crushing.
Samples under variable stress states had variable critical compressive stress for the occurrence of
isolated fractures in the larger diameter particles, after which the fracturing behavior changed from
self–extending to inter-connecting. Particle attrition resulted in a significant increase in the proportion
of fines and smaller diameter particles (<5 mm).

According to the experimental observations of the original GSD effect on seepage characteristics,
the overall process of porosity and permeability evolution during compression can be divided into
three different stages. In the first stage, the porosity and permeability decrease was mainly attributed
to the reduction in pore diameter. Both the porosity and permeability decrease occurred to a lesser
extent in samples with a higher mass fraction of large diameter particles. Void filling that occurred
following particle attrition appeared to be the main cause for the reduction in porosity and permeability.
During the second stage, the porosity and permeability in samples (d, e, f, and g) continued to decrease,
and sample (h) showed the largest reduction perhaps due to rapid particle crushing (high stress state).
In the third stage, consolidation of the granular coal occurred very rapidly and the porosity and
permeability decreased the most for samples with a higher mass fraction of large diameter particles.
An empirical model was applied to analyse the permeability and porosity evolution for the seepage and
crushing processes. The prediction indicated that particle crushing may have caused the permeability
increases during compression. It was hypothesized that this was also the main cause for the predictive
values being lower than those obtained from the experiments in most cases. For samples under
different stress states, the predictive accuracy for the porosity and permeability evolution was the
same. For samples within the highest mass fraction of large diameter particles, the predictive accuracy
was the lowest.
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Abbreviations

Latin Letters Greek Letters
h vertical axis going through the left of sample (L) µg gas viscosity (mL−1·T−1)
Hi height of granular coal during compression (L) σi compressive stress (mL−1·T−2)
Ha cylindrical tube height (L) ρc coal density (mL−3)
Hb plunger height (L) ρg gas density (mL−3)
Hc porous disk thickness (L) φ porosity (-)
Hd felt pad thickness (L) φi porosity during compression (-)

Hei
height of plunger head exceeds cylindrical tube
during compression (L)

ζi
permeability of granular coal during
compression (L2)

m mass of granular coal (M) Sub- and Superscripts
p pore pressure (mL−1·T−2) i compressive stress state (-)

pi−in
pore pressure at intake boundary (gas in) during
compression (mL−1·T−2)

j size range (-)

pi−out
pore pressure at outtake boundary (gas out) during
compression (mL−1·T−2)

Special Symbols

r radius of the cylindrical tube (L) ∂ partial differential operator (-)

vi−in
gas seepage velocity at intake boundary (in) during
compression (L·T−1)

∂()/∂h Nabla operator (L−1)
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