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Abstract 

Gondwana breakup changed the global continental configuration, leading to opening of 

major oceanic gateways, shifts in the climate system and significant impacts on the 

biosphere, hydrosphere and cryosphere. Although of global importance, the earliest stages 

of the supercontinental fragmentation are poorly understood. Reconstructing the processes 

driving Gondwana breakup within the ice-covered Weddell Sea Rift System (WSRS) has 

proven particularly challenging. Paleomagnetic data and tectonic reconstructions of the 

WSRS region indicate that major Jurassic translation and rotation of microcontinental blocks 

were a key precursor to Gondwana breakup by seafloor spreading. However, geophysical 

interpretations have provided little support for major motion of crustal blocks during 

Jurassic extension in the WSRS. Here we present new compilations of airborne magnetic and 

airborne gravity data, together with digital enhancements and 2D models, enabling us to re-

evaluate the crustal architecture of the WSRS and its tectonic and kinematic evolution. Two 

provinces are identified within the WSRS, a northern E/W trending province and a southern 
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N/S trending province.  A simple extensional or transtensional model including ~500 km of 

crustal extension and Jurassic magmatism accounts for the observed geophysical patterns.  

Magmatism is linked with rifting between South Africa and East Antarctica in the north, and 

associated with back-arc extension in the south. Our tectonic model implies ~30 degrees of 

Jurassic block rotation and juxtaposes the magnetically similar Haag Block and Shackleton 

Range, despite differences in both Precambrian and Pan African-age surface geology. 

Although geophysically favoured our new model cannot easily be reconciled with geological 

and paleomagnetic interpretations that require ~1500 km of motion and 90 degrees 

anticlockwise rotation of the Haag-Ellsworth Whitmore block from a pre-rift position 

adjacent to the Maud Belt. However, our model provides a simpler view of the WSRS as a 

broad Jurassic extensional/transtensional province within a distributed plate boundary 

between East and West Antarctica.    

Keywords: Magnetic anomalies, gravity anomalies, continental rifting, tectonics, 

microcontinent.   
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1 Introduction 

 

Gondwana breakup changed the global continental configuration, led to the 

opening of major oceanic gateways, likely triggered major shifts in the climate system and 

had significant impacts on the biosphere, hydrosphere and cryosphere (Storey et al., 2013). 

The breakup of Gondwana was initiated along a rift zone which comprised the Somali Basin, 

the southern Africa-Dronning Maud Land conjugate margins and the Weddell Sea 

embayment (Dalziel et al., 2013). Seafloor spreading between Africa and East Antarctica had 

commenced by ca 160 Ma (Ghidella et al., 2007; Leinweber and Jokat, 2012; Roeser et al., 

1996). However, continental separation was preceded by emplacement of the Karoo/Ferrar 

mafic Large Igneous Province (LIP), one of the most voluminous Mesozoic LIP, and the 

development of the Weddell Sea Rift System (WSRS) (Fig. 1).  

The drivers and nature of Gondwana breakup remain contentious. Both the 

presence of one or more mantle plumes and the location within a back-arc position relative 

to the Paleo-Pacific margin (Fig. 2a) have been invoked as drivers of plate motion and wider 

Gondwana breakup (Dalziel, 2013; Elliot and Fleming, 2000; Martin, 2007). One complicating 

factor in interpretation of the early stages of Gondwana breakup is that it is thought to 

involve distinct microcontinental fragments. This unusual configuration has been linked in 

part to the influence of tectonic inheritance, specifically to earlier collisional and indentation 

tectonic processes responsible for the assembly of East Antarctica and Africa into Gondwana 

during Pan-African events ca. 600-500 Ma (Jacobs et al., 2015; Jacobs and Thomas, 2004). 

One key  crustal block is the West Antarctic Ellsworth-Whitmore mountains crustal block 
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(Dalziel and Elliot, 1982) referred to here as the Haag-Ellsworth Whitmore block (HEW) (Figs. 

1 and 2). The HEW is generally regarded as a far travelled allochthonous block that was 

transferred from an original pre-breakup position close to the East Antarctic plate and/or to 

South Africa (in the Natal Embayment) (Fig. 2a) to its current position in West Antarctica, 

south of the WSRS (Dalziel, 2013; Randall and MacNiocaill, 2004; Schopf, 1969). The 

movement of a far travelled crustal block in the WSRS region during Gondwana breakup is 

widely accepted. However, the relationships between the formation of the Jurassic LIP, 

intracontinental extension in the WSRS, possible triple junctions and postulated crustal 

block movements have remained largely elusive (Ferris et al., 2000; Studinger and Miller, 

1999). 
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Figure 1. Regional topography and geological sketch map of the Weddell Sea Rift System 

(WSRS) (yellow outline). Note displaced Haag and Ellsworth Whitmore Mountains (EWM) 

crustal block (purple outlines). Key Jurassic features associated with Gondwana breakup 

include: widespread Ferrar tholeiitic rocks (solid red blocks) (Elliot and Fleming, 2004); Dufek 

Intrusion (DI) (black/red check) (Ferris et al., 1998); Jurassic granites (red diamonds) (Storey 

et al., 1988b); Seismically imaged seaward dipping reflector sequences (SDR) (red hatch) 

(Kristoffersen et al., 2014); Orion, Andenes and Explora magnetic anomalies (OA, AA and EA) 

linked to Jurassic magmatism (Ferris et al., 2000; Golynsky and Aleshkova, 1997a); Localised 

rifts including the Evans Rift (ER), Weddell Rift Anomaly (WRA), Filchner Rift (FR), and 
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Jutulstraumen Rift (J) (dashed lines) (Aleshkova et al., 1997; Ferraccioli et al., 2005a; 

Ferraccioli et al., 2005b; Jones et al., 2002); The strike-slip Pagano Shear Zone (PSZ) (Jordan 

et al., 2013). West of the WSRS the Antarctic Peninsula (AP) geological provinces (Burton-

Johnson and Riley, 2015) include Permian sediments at Erehwon Nunatak and FitzGerald 

Bluffs (EF) (Elliot et al., 2016), the Jurassic Chon Aike Volcanic group (CV) (Riley et al., 2001), 

and Jurassic to Cretaceous back-arc Latady formation sediments (Lat. Fm.) (Laudon, 1992). 

East of the WSRS East Antarctica’s geological provinces include the Coats Land Block (C) 

(Studinger and Miller, 1999), Grunehogna cratonic fragment (G) (Marschall et al., 2013) and 

inferred Tonian age Oceanic Arc Super Terrane (TOAST) (Jacobs et al., 2015), which are 

separated by the Mesoproterozoic Maud Belt (MB),  and late Neoproterozoic to Cambrian 

East African Antarctic Orogen (EAAO) and Ross Orogen (RO) (Jacobs et al., 2015; Mieth and 

Jokat, 2014). White lines mark Permo-Triassic Gondwanide fold trends in the Ellsworth (EM) 

(Curtis, 1997) and Pensacola (P) (Storey et al., 1996a) mountains. Orange blocks mark un-

deformed Paleozoic sediments (Beacon Supergroup and correlatives) (Bradshaw, 2013). 

Other abbreviations: Berkner Island (BI), Patuxent Range (PX), Shackleton Range (SR), and 

the West Antarctic Rift System (WARS). Green line marks seismic refraction study along front 

of the Ronne Filchner Ice Shelf (RFIS) (Leitchenkov and Kudryavtzev, 1997).  Yellow crosses 

locate sites of EWM paleomagnetic studies (Grunow et al., 1987; Randall and MacNiocaill, 

2004; Watts and Bramall, 1981). Inset locates study area (black box) within Antarctica. 

 

Several geophysical studies investigated the WSRS during the 1980s and 90s, 

each using different techniques to assess the structure, crustal architecture and kinematics 
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of the region (Aleshkova et al., 1997; Ferris et al., 2000; Golynsky and Aleshkova, 1997b; 

Hübscher et al., 1996; King and Bell, 1996; Leitchenkov and Kudryavtzev, 1997; Studinger 

and Miller, 1999).  These studies, although in general agreement that the WSRS reflects a 

broad continental rift, did not clearly recognise major faults or identify large-scale 

mechanisms that could have enabled crustal block movements or rotations compatible with 

those required by conventional far travelled tectonic models. A recent aerogeophysical 

survey over the inland extent of the WSRS has, however, imaged a major strike slip fault 

system, the Pagano Shear Zone (PSZ) separating East and West Antarctica (Fig. 1), which 

may have accommodated at least some of the proposed Jurassic crustal block motion 

(Jordan et al., 2013).  

Here we present new compilations of enhanced airborne magnetic and 

airborne gravity data across the WSRS and adjacent regions. These datasets are interpreted, 

together with limited existing seismic data, satellite magnetic data, and with reference to 

the geological literature, to re-investigate the crustal architecture of the WSRS and to re-

assess its tectonic and kinematic evolution with respect to the early phases of Gondwana 

breakup. Our new integrated interpretation of the crustal architecture of the WSRS 

indicates the southern WSRS is a highly extended terrane, with voluminous rift-related 

Jurassic magmatism, as suggested by some previous authors (Dalziel et al., 2000; Studinger 

and Miller, 1999). We discuss a range of tectonic scenarios for WSRS evolution based on our 

geophysical interpretations. We find no geophysical evidence for significant (~1500 km) 

crustal block translation and ~90° rotation in our new potential field data compilations and 

models.  We propose instead an alternative model that predicts ~500 km of movement of 

the HEW crustal block and ~30° block rotation during Jurassic crustal extension in the WSRS. 
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Our model represents a simpler geophysical view of the WSRS region compared to most 

previous tectonic models. According to our model, the WSRS formed in response to 

distributed crustal extension within a broad plate boundary region between East and West 

Antarctica. We suggest that the ~60 degrees of rotation unaccounted for by the 

geophysically imaged Jurassic extension may have occurred during the Permian collisional 

Gondwanide orogen.  
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Figure 2. Tectonic and geological sketch of Gondwana. Reconstructions modified after 

Dalziel (2013) and Jacobs et al., (2015) respectively. a) Permian to Jurassic fragmentation of 

Gondwana. Note tight reconstruction of Haag-Ellsworth Whitmore Mountains (HEW) block 

(yellow and green respectively) assuming no pre-existing Filchner Block (Dalziel, 2013). Black 

box locates study area. Abbreviations: Cape Fold Belt (CFB), Lebombo Monocline (LM), 

Thurston Island (TI), Marie Byrd Land (MBL), Tasmania (Tz), Pensacola Mountains (P). Other 

abbreviations as in Fig. 1. b) Precambrian and Cambrian building of Gondwana. Early 
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Neoproterozoic orogens in purple: NNB=Namaqua-Natal Belt, MB= Maud Belt, 

TOAST=Tonian Oceanic Arc Super Terrane, Ra= Rayner Province, GP=Inferred Grenvillian-age 

Gamburtsev orogenic province (Ferraccioli et al., 2011). Late Neoproterozoic orogens in pale 

blue and grey. Note proposed tectonic escape of microcontinental fragments towards the 

proto-Weddell Sea region at ca 500 Ma with Haag-Ellsworth Whitmore block (HEW) and 

inferred Filchner Block (F) already located outboard from the EAAO (Jacobs et al., 2015; 

Jacobs and Thomas, 2004).  

 

2 Geological setting and tectonic evolution  

 

2.1 Pre-Jurassic geological evolution 

 

The breakup of Gondwana and movement of crustal blocks  within the WSRS 

was potentially influenced by the complex pre-existing lithospheric architecture of the 

region (Jacobs and Thomas, 2004). During Gondwana assembly in the late Neoproterozoic 

to earliest Paleozoic, the HEW is inferred to have been located at the junction between 

three distinct orogens; the East-African-Antarctic Orogen (EAAO), Saldanian and Ross 

orogens (Fig. 2b), (Jacobs et al., 2015; Jacobs and Thomas, 2004), and may have been 

adjacent to Laurentia (Dalziel, 1997, 2014). The EAAO may reflect final suturing between 

East and West Gondwana, although the true scale and location of this suture remains to be 

uniquely identified (Figs. 1 and 2b). The EAAO incorporated and overprinted to various 

degrees a number of distinct older Mesoproterozoic crustal blocks and terranes including 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

11 
 
 

the Coats Land Block, a Tonian age Oceanic Arc Super Terrane, and potentially also the HEW, 

Falkland and Filchner microcontinents (Fig. 2b) (Jacobs et al., 2015). At Haag Nunataks 

within the HEW and on the Falkland Islands ~1 Ga basement rocks similar to those observed 

in East Antarctica, and unlike those exposed in West Antarctica, crop out (Clarkson and 

Brook, 1977; Jacobs et al., 1999; Millar and Pankhurst, 1987; Storey et al., 1994). It has been 

suggested that major transcurrent fault systems of the EAAO allowed tectonic escape of the 

inferred pre-existing microcontinental fragments from the EAAO interior towards the Paleo 

Pacific (Fig. 2b) (Jacobs et al., 2015; Jacobs and Thomas, 2004). The Saldanian orogen to the 

north of the reconstructed HEW marks the amalgamation between southern Africa and 

South America (Rozendaal et al., 1999), while the Ross Orogen to the south reflects 

development of a continental margin magmatic arc system (Ferraccioli et al., 2002; Goodge, 

2007). Both these orogens appear to temporally overlap with the late Neoproterozoic and 

early Paleozoic EAAO (Goodge, 2007; Jacobs et al., 2015; Rozendaal et al., 1999).  

Exposed lithologies in the HEW block include a ca 13 km thick Paleozoic 

sedimentary sequence in the Ellsworth Mountains and adjacent nunataks together called 

the Ellsworth Whitmore Mountains (EWM) province (Anderson et al., 1962; Storey and 

Dalziel, 1987). This distinctive EWM sedimentary sequence is unlike any other sequence 

exposed in West Antarctica, aside from two minor exposures at Erehwon Nunatak and 

FitzGerald Bluffs (Fig. 1) (Elliot et al., 2016). The earliest Paleozoic sequences record 

sedimentation and volcanism ~512 Ma in an inferred continental rift setting (Curtis, 2001) 

approximately coeval with the  EAAO and Ross orogens (Fig. 2b). The lack of Ross or EAAO 

age deformation or metamorphism of both the EWM sediments and Haag basement rocks 

has been used to suggest that the HEW was a distinct crustal block,  which lay within an 
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embayment, or back-arc region within the broader compressional Paleo-Pacific margin of 

Gondwana (Curtis, 2001; Curtis et al., 1999). Alternatively, the HEW may have simply been 

located to the northwest of the EAAO, adjacent to the Grenvillian sector of the Maud Belt 

(Fig 2a) (Dalziel et al., 2013). However, other authors have argued that the EAAO was a 

broader orogen that included multiple lithospheric scale shear zones, which may have 

surrounded the more rigid HEW block even if it was originally adjacent to the Maud Belt 

(Fig. 2b) (Jacobs and Thomas, 2004). It has been proposed that the Cambrian Ellsworth 

Whitmore rift extended into South Africa, where fluvial deposits above the Saldinian 

basement are inferred to mark sedimentation close to the rift flank, supporting the position 

of the HEW in the Natal embayment close to South Africa in Cambrian times (Curtis, 2001). 

However, alternative models for the South African sediments as foreland or intra-orogen 

deposits would question this link (Rozendaal et al., 1999).  

By Permian times, provenance studies show sediments in the Ellsworth 

Mountains and adjacent Erehwon Nunatak and FitzGerald Bluffs in the Antarctic Peninsula 

(Fig. 1) were deposited in a basin distinct from the South African Karoo basin, with material 

dominantly sourced from East Antarctica (Elliot et al., 2016).  Stratigraphic correlation, 

including the presence of extensive Permo-Carboniferous glacial tills in the EWM and 

Pensacola Mountains (Matsch and Ojakangas, 1992 ; Schopf, 1969) has been used to 

constrain the EWM to a position north of the present day Pensacola Mountains (Schopf, 

1969). Paleo ice-flow markers suggest that glacial sediments were transported into the 

EWM basin by ice streams flowing outward from East Antarctica (Matsch and Ojakangas, 

1992 ).  This model is further supported by Permo-Carboniferous glacial tills in EWM, 

Falkland Islands and South Africa, which all contain archaeocyathan limestone clasts most 
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likely transported from the Transantarctic Mountains/East Antarctica by an extensive 

Gondwanide ice sheet (Stone and Thompson, 2005). 

The sediments in the HEW and Falkland crustal blocks, and Pensacola 

Mountains of East Antarctica, were all deformed during the extensive Permian Gondwanide 

orogeny (Figs. 1 and 2a). This compressional event deformed sedimentary sequences 

inboard of the Paleo-Pacific Gondwanide margin in a ~4000 km long fold and thrust belt 

running from South America to the Pensacola Mountains (Curtis, 1997, 2001; Curtis and 

Hyam, 1998; Johnston, 2000; Pankhurst et al., 2006; Stone, 2010).  Within the EWM 

sediments a strong tectonic fabric developed (Fig. 1) due to partitioned dextral 

transpressive deformation which created a series of well-defined folds (Curtis, 1997). In the 

Pensacola Mountains Gondwanide deformation follows the trend of a series of pre-existing 

Ross-age folds, which were tightened by the subsequent Permo-Triassic deformation (Storey 

et al., 1996a). The coincident trend of the Cambrian to Permo-Triassic structural elements 

may be related to the fundamental inherited geometry of the boundary between East and 

West Antarctica in the Pensacola Mountains region (Ford, 1972). The intensity of 

Gondwanide folding decreases markedly eastward across the Pensacola Mountains (Ford, 

1972). Gondwanide deformation is also absent along strike in the Patuxent mountains 

(Schmidt et al., 1964) and towards the Shackleton Range (Brewer, 1989), where 

undeformed Devonian (Beacon) sediments are exposed (Fig. 1). Together this suggests that 

the Pensacola Mountains may lie close to the eastern and southern end of the Gondwanide 

orogen. It is clear that today the Gondwanide trends in the EWM and Pensacola Mountains 

are orthogonal to each other. This key observation has been used to support a post-Permian 
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age rotational tectonic model for the HEW block as a whole (Dalziel, 2007, 2013; Dalziel and 

Grunow, 1992; Schmidt and Rowley, 1986).   

 

2.2 Jurassic magmatism 

 

The Karoo/Ferrar LIP was emplaced in East Antarctica and South Africa at 

around 185-177 Ma (Fig. 1 and 2a) (Elliot, 1992; Elliot and Fleming, 2000; Ferraccioli et al., 

2005a; Jourdan et al., 2005; Riley et al., 2005). This dominantly mafic event has been linked 

with the impact of a mantle plume between South Africa and East Antarctica, potentially a 

key driver for Gondwana breakup (Fig. 2a). The regions around the HEW and Falkland crustal 

blocks were subject to significant magmatism associated with this LIP. Jurassic mafic dikes 

geochemically similar to Karoo/Ferrar magmas occur in the Falkland Islands (Hole et al., 

2016; Mitchell et al., 1999), where paleomagnetic and aeromagnetic data indicate that they 

were rotated by ~150° clockwise during the early phases of Gondwana break up with an 

additional 30° clockwise rotation related to subsequent opening of the South Atlantic (Stone 

et al., 2009; Taylor and Shaw, 1989).  

Jurassic granites, outcropping in several isolated nunataks across the EWM 

(Fig. 1), are thought to be related to the LIP by crustal melting, possibly with a Ferrar-like 

heat source and parental magma (Lee et al., 2012; Storey et al., 1988b). Recent dating and 

geochemical analysis of these granites gives an age of between 174 and 177 Ma (Craddock 

et al., 2016) and is consistent with a link between the Ferrar LIP and the slightly later granitic 

magmatism. Aeromagnetic data have been used to suggest some of these granites were 
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emplaced along the PSZ which may have accommodated a sinistral component of the 

Jurassic HEW motion (Fig. 1) (Jordan et al., 2013). The Ellsworth Whitmore granites may be 

part of a broader Silicic Large Igneous Province (SLIP) including the Antarctic Peninsula and 

South American Chon Aike province (Pankhurst et al., 1998). SLIP magmatism has been 

linked to interaction between Paleo-Pacific margin subduction, the Karoo/Ferrar plume and 

continuing continental extension. The Latady Formation along the eastern margin of the 

Antarctic Peninsula provides geological records for such extensional processes in an inferred 

back-arc setting (Laudon, 1992) (Fig. 1). Seismic interpretations also suggest that this 

sequence of Jurassic to Cretaceous back-arc sediments overlies the western part of the 

WSRS (King and Bell, 1996).  

 

2.3 Proposed Jurassic crustal block  motion 

 

A cornerstone of the conventional tectonic model for the evolution of the 

WSRS during Gondwana breakup is the rotation and translation of the HEW. Key evidence 

supporting HEW rotation comes from paleomagnetic poles derived from folded Middle to 

Late Cambrian metasediments exposed in the Ellsworth Mountains and adjacent nunataks 

(Fig. 1) (Grunow et al., 1987; Randall and MacNiocaill, 2004; Watts and Bramall, 1981). The 

Cambrian magnetisation in the Ellsworth Mountains is primary, with poles becoming well 

clustered after the effects of the Permian Gondwanide folding are removed (Randall and 

MacNiocaill, 2004). Comparison with Cambrian poles for other parts of Gondwana require 

~90° anticlockwise rotation of the Ellsworth Mountains sediments and a location further 
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north, similar to that shown in Figure 2. It is generally inferred that subsequent rotation of 

the HEW block occurred during its translation to its current position during Jurassic breakup 

of Gondwana (Dalziel, 2013; Grunow et al., 1991; Randall and MacNiocaill, 2004). 

Paleomagnetic data from the ca 175 Ma granites in the HEW block indicate that by the time 

of granite emplacement, HEW and Antarctic Peninsula were in their current positions with 

respect to each other (Grunow et al., 1987). However, there is no more precise date for the 

bulk of HEW rotation than post-Middle to Late Cambrian and prior to Jurassic granite 

emplacement.  

 

2.4  Structure of the Weddell Sea Rift System- a geophysical view  

 

The area between East and West Antarctica occupied by the WSRS is covered 

by the Ronne and Filchner Ice Shelves, which prevent direct geological observations of the 

rift itself. Hence information about this critical region is derived mainly from geophysical 

data. Seismic refraction data along the ice shelf margin (Fig. 1) indicates that syn- to post-rift 

sedimentary infill is up to 13-15 km thick, thinning towards the margins of the WSRS 

(Hübscher et al., 1996; Leitchenkov and Kudryavtzev, 1997). The underlying ~8 km thick 

layer with relatively low seismic velocities is interpreted by some authors as deformed 

Paleozoic meta-sediments, similar to those exposed in the Ellsworth Mountains 

(Leitchenkov and Kudryavtzev, 1997). The deepest crustal layer recognised by seismic 

refraction studies exhibits high velocities, interpreted to reflect significant mafic 

underplating (intrusions) within the lower WSRS crust (Jokat et al., 1997; Leitchenkov and 
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Kudryavtzev, 1997). Seismic refraction studies yield a Moho depth between 33 and 28 km 

beneath the WSRS, with the thinnest crust beneath the Filchner rift, offset from the centre 

of the sedimentary basin (Leitchenkov and Kudryavtzev, 1997). Regional seismic 

tomography studies are in broad agreement  with seismic refraction results and suggest 

crust ~30 km thick beneath the WSRS, with 35 and 40 km thick crust beneath the adjacent 

Antarctic Peninsula, much of the HEW, and East Antarctic regions (An et al., 2015a). The 

seismic refraction data have been used to argue that oceanic crust predicted in some 

models of HEW translation is unlikely within the WSRS (Jokat et al., 1997). In addition, 

seismic reflection studies revealing flat lying, or relatively mildly folded post-rift sediments 

indicate that there has been no significant strike slip motion that would allow translation of 

crustal blocks in post- Jurassic times (Jokat et al., 1997; King and Bell, 1996).  

Across the WSRS, gravity data support the presence of thinned continental 

rather than oceanic crust (Aleshkova et al., 1997; Block et al., 2009; Studinger and Miller, 

1999). Modelling indicates 5-10 km of sedimentary infill within the rift system, overlying ~20 

km continental crust (Studinger and Miller, 1999). This supports the suggestion that a pre-

existing continental “Filchner Block” should be included in tectonic reconstructions of the 

WSRS and models of HEW movement (Studinger and Miller, 1999). Localised positive 

Bouguer gravity anomalies including the Weddell Rift Anomaly, and Filchner Rift Anomaly 

along the flanks of the WSRS (Fig. 1) suggest that more localised crustal extension also 

occurred within the broader WSRS (Aleshkova et al., 1997). A distinct positive free air 

anomaly along the bathymetric shelf break has been modelled as the transition between 

continental and oceanic crust coupled with dense mafic underplating within a ~150 km wide 

continent ocean transition zone at the northern edge of the WSRS (Ferris et al., 2000). More 
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negative Bouguer anomalies south of the WSRS are interpreted to reflect the thicker, less 

extended crust of the HEW (Jordan et al., 2013).  

Magnetic data have also been used to infer the crustal structure across the 

WSRS. The northern edge of the WSRS is marked by the Orion, Andenes and Explora 

magnetic anomalies (Fig. 1) which are interpreted to reflect a combination of Jurassic 

intrusions, underplate and thick seaward dipping lava sequences within the transition 

between continental and oceanic crust (Ferris et al., 2000; Golynsky and Aleshkova, 1997b; 

Kristoffersen et al., 2014). Berkner Island is also associated with a significant positive 

magnetic anomaly that may reflect a link between the Explora wedge and the Dufek mafic 

intrusion (Fig. 1), an exposed part of the Ferrar LIP (Behrendt et al., 1981; Hunter et al., 

1996). Alternatively, the Berkner Island anomaly may reflect an uplifted highly magnetic 

Precambrian basement block (Ferris et al., 1998; Johnson et al., 1992). A hybrid model 

where basement structures exert control on the location of magmatism along the margin of 

East Antarctica has also been proposed (Golynsky and Aleshkova, 1997a).  Magnetic 

anomaly patterns have been interpreted to suggest that the WSRS is the failed third arm of 

a complex Jurassic rift-rift-rift triple junction which developed above the inferred 

Karoo/Ferrar mantle plume in a triaxial strain regime (Ferris et al., 2000). This failed rift arm 

may have been superimposed on a pre-existing suture that has been interpreted as 

separating East and West Antarctic basement provinces (Golynsky and Aleshkova, 1997b). 

However, in contrast to other tectonic models, the presence of either an East/West 

Antarctic suture, or the arm of a Jurassic triple junction in the WSRS, imply that no 

significant movement of the HEW within the WSRS occurred during the Early to Middle 

Jurassic breakup of Gondwana (Ferris et al., 2000; Golynsky and Aleshkova, 1997b).   



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

19 
 
 

Tectonic models that include a tight fit reconstruction of the HEW, Falkland 

Islands, East Antarctica, and South Africa (Fig. 2b) (Dalziel et al., 2013) would appear 

incompatible with the presence of the inferred pre-existing continental Filchner block. 

Alternative tectonic models for Jurassic rotation and translation of a broader HEW and a 

pre-existing continental Filchner block (Storey et al., 1996b) do not have clear kinematic 

markers within the WSRS either.  Additionally, some plate tectonic models have been used 

to propose that substantial independent movement of the HEW microplate is not required 

as part of Gondwana breakup (Eagles and Vaughan, 2009). Our review clearly illustrates that 

significant open questions remain both about the crustal architecture of the WSRS and, 

above all, the relationships between the geophysically imaged structures and the different 

models for rifting and inferred major motions of a crustal block in the region.  

 

3 Data compilation and enhancement 

 

To better constrain the structures within the WSRS we re-levelled and re-

gridded all the available gravity and magnetic datasets for this region.  These new 

compilations, together with digital enhancement and modelling allow us to re-assess the 

regional pattern of geophysical signatures across the entire WSRS. 

 

3.1 Gravity data compilation 
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Our new grid of free air gravity data (Fig. 3a) was constructed from a range of 

sources including an existing Russian compilation (Aleshkova et al., 1997), airborne NASA 

operation ICEBRIDGE and British Antarctic Survey (BAS) data (Cochran and Bell, 2010, 

updated 2014; Jones et al., 2002; Jordan et al., 2013). Sparse point land data provided 

additional confirmation of the pattern and amplitude of anomalies across the region, but 

was not included in our final gridded compilation (Behrendt et al., 1974; Herrod, 1987).  

Data for the individual airborne surveys was upward or downward continued to a common 

altitude of 3750 m.  All gravity data sets were referenced to the global GOCO3s satellite 

gravity field (Mayer-Gürr et al., 2012) to minimise biases between individual surveys. 

Oceanic gravity data from the global marine gravity anomaly grid was included in offshore 

areas with no airborne data coverage (Sandwell and Smith, 2009). The Bouguer anomaly 

(Fig. 3b) was calculated by correcting the free air gravity data for the modelled effect of 

known topography and bathymetry, based on the BEDMAP2 topographic compilation 

(Fretwell et al., 2013).  Standard densities of 2670, 1028 and 915 kgm-3 were assumed for 

rock, water and ice respectively. See Sup. Mat. S1 for full details on the gravity compilation.    
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Figure 3. New gravity compilation maps. Transparent background image shows GOCO3s 

satellite gravity data (Mayer-Gürr et al., 2012). a) Free air anomaly map. Note general 

correlation with sub-ice topography/bathymetry (Fig. 1), with the exception of the positive 

Continental Margin Gravity High (CMGH). Thin grey lines mark extent of selected magnetic 

anomalies (abbreviations as in Fig.1). RI and FI mark Ronne and Filchner Ice shelves 
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respectively. b) Bouguer gravity anomaly map. White lines locate our 2D gravity and 

magnetic models. Note negative values over East Antarctica and the Antarctic Peninsula, 

values close to zero across much of the Ronne Ice Shelf and localised highs towards the 

flanks of the WSRS.  North of the magnetic highs Bouguer anomalies >~250 mGal indicate 

thin oceanic crust. Also note contrasting Bouguer anomalies between Haag and Ellsworth 

Whitmore Mountains (EWM) regions. 

 

3.2 Magnetic data compilation 

 

Our aeromagnetic compilation (Fig. 4a) was created using US, Russian and 

BAS line data released as part of the ADMAP compilation (Golynsky et al., 2001), together 

with more recent BAS data (Ferris et al., 1998; Ferris et al., 2002; Jordan et al., 2013). By 

reverting to the original line data we were able to produce a higher resolution compilation 

than the original Antarctic-wide ADMAP magnetic data compilation. We performed 

statistical and microlevelling of the individual surveys (Ferraccioli et al., 1998), referencing 

the surveys to the MF7 satellite magnetic field (Maus et al., 2008), and the derivation of a 

new merged and reduced to the pole magnetic anomaly grid (Fig. 4a). This approach 

provided improved resolution of magnetic features.  See Sup. Mat. S2 for further details on 

the new magnetic compilation.  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23 
 
 

 

Figure 4. New aeromagnetic anomaly compilation. a) Reduced to pole (RTP) total field 

magnetic anomaly map. Solid grey lines show picked lineaments based on manual 

interpretation of TDX enhancement in (b). Dashed grey lines indicate magnetic provinces 

based on TDX enhancements and pseudo-gravity terrace map (Fig. 5a). Note linear north- 
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south trending Korff (KA), Henry (HA) and Berkner Island (BI) anomalies, and East-West and 

Northeast-Southwest trending Orion (OA), Andenes (AA) and Central (CA) anomalies. Other 

abbreviations as in Fig. 1. Yellow star locates outcropping Middle Jurassic basalts (178 ± 1 

Ma) in the Antarctic Peninsula (Riley et al., 2016). Other features as in Fig. 1. b) TDX 

enhancement of theoretical edges of anomaly sources. Dark regions show high (>64°) TDX 

values associated with source margins. Background colour shows RTP magnetic field. Yellow 

lines locate 2D models. 

 

3.3 Magnetic data enhancement and modelling 

 

To better define the geophysical structures within our study area we 

calculated two enhancements, the normalized maximum horizontal gradient amplitude of 

the tilt derivative (TDX) (Cooper and Cowan, 2006), and a terrace map of the pseudo-gravity 

(Blakely and Simpson, 1986; Cordell and Grauch, 1985; Cordell and McCaffrey, 1989). TDX 

normalises and enhances anomaly margins, and is calculated as the inverse tangent of the 

ratio of the maximum horizontal and vertical gradients of the magnetic field (Cooper and 

Cowan, 2006). High TDX values (>64°) locate the theoretical edges of the source bodies. This 

arbitrary threshold gives a clear image with anomaly margins delineated by continuous 

bands of high TDX (Fig. 4b). The pseudo gravity enhancement typically enhances longer 

wavelength features giving a view of deeper and more regional structures (Blakely and 

Simpson, 1986; Cordell and Grauch, 1985). It is calculated by integrating the reduced to pole 

magnetic field before calculating the equivalent gravity anomaly assuming all magnetic 
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sources have the same specific apparent density contrast. We chose an apparent density 

contrast between the inferred magnetised bodies and surrounding material of 1000 kg m−3, 

and an assumed magnetization of 0.5 gauss. A terrace map of the pseudo gravity values was 

produced (Fig. 5a) which differentiates provinces each with internally consistent magnetic 

properties (Philips, 1992). Margins of the pseudo gravity terrace blocks coincide with peaks 

in the maximum horizontal gradient of pseudo gravity (Cordell and McCaffrey, 1989). The 

lineations and blocks revealed and accentuated by these two digital enhancements were 

manually picked. These picked structures (Fig. 6) together with modelling of the crustal 

structure provide the basis for our interpretation of the WSRS region.  
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Figure 5. Regional magnetic features. a) Pseudo-gravity terrace map derived from new 

aeromagnetic compilation (Fig. 4a). Note distinct Haag and EWM provinces. b) MF7 satellite 

magnetic anomaly model, an update to the earlier MF6 model (Maus et al., 2008). Note 

distinct Haag and EWM provinces are also visible in this long wavelength field. Also note 
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similarity between Haag and Shackleton positive anomalies (black arrows), in contrast to 

Maud Belt relative magnetic low. 

To assess the depth of the basement magnetic sources across the WSRS we 

applied a 2D Euler depth to source technique along two profiles (Fig. 7).  This technique uses 

the horizontal and vertical gradient of the magnetic field along a profile together with 

assumptions about the source body (the structural index) and analysis window size, to 

provide estimates of the source depth (Mushayandebvu et al., 2001). The first profile 

followed the front of the Ronne-Filchner ice shelf, approximately coincident with an existing 

seismic refraction experiment (Leitchenkov and Kudryavtzev, 1997).  The second profile ran 

from southeast to northwest across the Ronne-Filchner Ice Shelf, orthogonal to the trend of 

the main magnetic structures. Data was sampled from our compiled grid and the calculated 

magnetic gradient values were filtered with a 10 km low pass filter to minimise residual 

noise.  As this technique was applied to investigate the basement structures a relatively 

large 50 km window was used, and both dike and contact solutions (structural index of 0 

and 1 respectively) were calculated.  Windows of 25 km and 80 km were also assessed, 

which return a similar pattern of estimated sources (Sup. Mat. S3).   

To investigate the architecture of the WSRS and its magmatic patterns we 

constructed two regional scale 2D joint gravity and magnetic models (Fig. 7). The aim of 

these models was firstly to test if a highly extended terrane model for the WSRS is 

compatible with the observed gravity anomalies. The second aim is to investigate if the 

presence of significant magmatic bodies, located beneath the syn- to post-rift sedimentary 

basin can explain the observed magnetic anomalies. In order to reduce the inherent 
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ambiguities associated with potential field modelling, our first model used the existing 

Russian seismic refraction line at the edge of the Ronne/Filcher ice shelves to create an 

initial layered crustal model (Fig. 7a). For more detail on the construction of our 2D models 

see Sup. Mat. S4. Although our first model is somewhat constrained by the seismic data, it 

lies oblique to or misses many of the key magnetic anomalies. We therefore constructed a 

second model orthogonal to the main magnetic anomalies (Fig. 7b).  We imposed the same 

initial layered crustal structure as our better constrained first model and assumed a similar 

broad sedimentary basin beneath the ice shelf, as indicated by depth to source solutions. 

 

4 Interpretation 

 

We use the distribution of magnetic trends (Fig. 4), regional magnetic 

terraces (Fig. 5a), and the satellite magnetic field MF7 (Fig. 5b) to interpret a number of 

distinct magnetic structures and provinces across the WSRS (Fig. 6). The sources for the 

observed magnetic anomalies and regional crustal architecture are interpreted here based 

on a combination of magnetic, gravity and seismic data, together with sparse geological 

information. We focus on interpretation of structures within the WSRS and the HEW block, 

which are the most critical for understanding the evolution of the earliest stages of 

Gondwana breakup. Within East Antarctica we interpret a number of additional provinces 

(Fig. 6) which broadly agree with those previously recognised and interpreted e.g. (Golynsky 

and Aleshkova, 1997b; Mieth and Jokat, 2014; Studinger and Miller, 1999).  
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Figure 6. Interpretative sketch of key magnetic lineaments and provinces. 

Three distinct regions are identified. Firstly the Jurassic Weddell Sea Rift System which is 

divided into two distinct provinces: The Northern Weddell Magnetic Province (NWMP) 

interpreted as a highly magmatic extensional rift zone or transtensional fault splay, and 

potentially including the previously identified marginal seaward dipping reflector sequence 

(SDR) (Kristoffersen et al., 2014); The Southern Weddell Magnetic Province (SWMP), 

interpreted to reflect Jurassic magmatism associated with extensional rift fabric. The second 

region is the HEW crustal block, which is divided into two provinces reflecting differences in 

both inferred basement and upper crustal rocks. The third East Antarctic region includes four 
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previously identified crustal provinces (Grunehogna cratonic fragment (G), Maud Belt (MB), 

Coats Land Block (CLB), and Shackleton Range (SR)), and a newly suggested 

Patuxent/Transantarctic Province (P/TAM). Note the Pagano Shear Zone (PSZ) is interpreted 

here to have allowed westward motion of the HEW during Jurassic extension of the SWMP. 

Also note the highlighted Haag, and Shackleton basement provinces which have parallel 

lineations and similar long wavelength magnetic signatures. Thin purple lines show Permian 

fold trends in Ellsworth and Pensacola mountains. Yellow crosses mark paleomagnetic 

sampling points.  

 

4.1 A composite Haag-Ellsworth Whitmore crustal block 

 

Magnetic data indicate that the HEW block is a composite crustal block 

formed of two distinct provinces.  These are the strongly magnetised Haag province with 

NNE-SSW oriented magnetic lineations and the magnetically quieter EWM region (Figs. 4 

and 5a). The magnetic sources within the Haag block are inferred to reflect Mesoproterozoic 

basement (Garrett et al., 1988). However the only exposure in the Haag province is <2km2 of 

Mesoproterozoic granitic gneiss basement with mafic lenses, in one small cluster of 

nunataks (Storey and Dalziel, 1987). The origin of the magnetic anomalies and regional 

magnetic fabric within the wider ~185,000 km2 Haag block cannot be precisely known due 

to the paucity of exposure. The dominant NNE-SSW magnetic lineations include the inferred 

margins of the block, which follow the trends within the block and likely reflect geological 

control on the overall shape of the block. The Haag magnetic trends have been previously 
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recognised (Garrett et al., 1987; Golynsky and Aleshkova, 1997a) and broadly correlate with 

the observed sub-ice topographic fabric in the Haag block (Fig. 1). Plausible interpretations 

for the magnetic fabric include: Mesoproterozoic basement structures associated with 

Grenville-age tectonic/magmatic features with little reactivation; normal faulting associated 

with extension during Jurassic rifting in the adjacent WSRS; Cretaceous to Cenozoic normal 

faulting linked to the West Antarctic Rift System; or a combination of Mesoproterozoic 

features and more recent reactivation. The exposed geological fabric has a shallow E/W dip, 

and strikes approximately N-S (Storey and Dalziel, 1987). This local structural trend strikes 

approximately parallel to the magnetic trends within the wider Haag province, which could 

be taken to support a Mesoproterozoic origin for the observed magnetic fabric. However, 

we cannot rule out later reactivation of these structures to give rise to the regional NNE-

SSW magnetic fabric. The regionally thinned crust beneath the Haag block and the adjacent 

Evans Rift, as indicated by positive Bouguer anomalies, would suggest that rift-related 

reactivation is highly likely  (Jones et al., 2002). In addition, previous 2D models of the 

observed magnetic anomalies suggested a horst and graben structure (Maslanyj and Storey, 

1990), supporting the idea of extensional reactivation of the tectonic structures in this 

region.  

The abrupt change in aeromagnetic signatures between Haag and the EWM 

provinces could represent deep burial of Haag basement beneath the EWM sediments. 

However, these distinct aeromagnetic provinces are also visible in long wavelength MF7 

satellite magnetic data (Fig. 5b), which typically distinguishes deeper crustal basement 

provinces. Our preferred interpretation of both short and long wavelength anomalies is 

therefore that the HEW is a composite block including two separate basement provinces. 
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The magnetic interpretation of two sub-blocks within the HEW is supported by the pattern 

of Bouguer anomalies (Fig. 3b), 2D modelling (Fig. 7b) and seismic observations (An et al., 

2015a), which indicate 5-10 km thinner crust beneath Haag relative to the EWM part of the 

HEW. The inferred difference in crustal thickness suggests that the Haag and EWM regions 

have basement which responded differently to extension within the WSRS region. The 

boundary between these two HEW provinces is presently obscured by a major ice stream, 

but we model it as a low angle detachment (Fig. 7b) in line with previous authors (Maslanyj 

and Storey, 1990). We suggest that a thrust fault may have originally formed during the 

Permian Gondwanide orogeny, a time of extensive transpressional folding in the EWM 

(Curtis, 1997), which was potentially reactivated as a low-angle normal fault during Jurassic 

extension. 

The southeastern edge of the EWM quiet magnetic province is marked by 

higher amplitude linear magnetic anomalies (Fig. 4) interpreted as Jurassic granites 

emplaced  along the PSZ (Jordan et al., 2013). The PSZ is a major shear zone inferred to lie 

close to the junction between the HEW and East Antarctica (Jordan et al., 2013). Our new 

terrace map (Fig. 5a) demonstrates that the PSZ marks the boundary between two 

magnetically distinct provinces, and may include a number of more minor fault splays to the 

south imaged by reconnaissance aeromagnetic data (Fig. 4a and 6). To the south of the 

EWM magnetic low, a more highly magnetic province is imaged in both the terrace map and 

the MF7 satellite magnetic field. We interpret this southern region as a distinct 

‘Patuxent/Transantarctic’ province of East Antarctica. This is consistent with both regional 

seismic studies which reveal that the Patuxent/Transantarctic province lies within the region 

of seismically imaged fast East Antarctic lithosphere (An et al., 2015a), and geological 
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observations (Curtis et al., 2004; Storey et al., 1996a) that the Pensacola and Patuxent 

Mountains have a distinct Cambrian deformational history from the now adjacent HEW. 

These observations confirm the generally accepted interpretation that the HEW is a distinct 

province from the now adjacent part of the East Antarctic continent. 

 

4.2 Weddell Sea Rift System provinces  

 

The WSRS is shown in our new magnetic compilation to include two distinct 

sub-provinces (Fig. 6). A southern province with a number of distinct approximately N-S 

trending anomalies including the Berkner Island, Henry and Korf Anomalies, and a northern 

province including the Orion, Andenes and Central anomalies together with a complex 

series of more minor anomalies with an overall NE-SW trend (Figs. 4 and 6). Component 

anomalies of these different provinces have been recognised and discussed previously 

(Ferris et al., 2000; Golynsky and Aleshkova, 1997b), and a broad extended continental 

Filchner Block has been proposed for the entire WSRS region (Dalziel and Lawver, 2001; 

Jokat et al., 1997; Storey et al., 1996b; Studinger and Miller, 1999). The two provinces we 

define within the previously identified Weddell Sea Magnetic Zone/Filchner Block are 

identified primarily based on the internal consistency of trends (Fig 4) within the different 

regions.  We name these two provinces the Southern Weddell Magnetic Province (SWMP) 

and Northern Weddell Magnetic Province (NWMP) (Fig. 6). Although the differing anomaly 

trends are best seen in the TDX enhancement (Fig. 4b), our terrace map also indicates the 

NWMP province is a distinct region of higher magnetic intensity relative to the SWMP (Fig. 
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5a). In the MF7 satellite magnetic field (Fig. 5b) these NWMP and SWMP provinces are not 

clearly differentiated.  As the satellite field is typically indicative of the regional crustal 

architecture, but does not clearly define the SWMP/NWMP boundary, we suggest that 

these two structural provinces are imposed on a relatively uniform, generally weakly 

magnetic underlying basement province.  

Positive magnetic anomalies within the SWMP have been variously 

interpreted as basement fragments or Jurassic igneous intrusions.  Towards the Haag block, 

the Korff Anomaly (Fig. 4a) has been interpreted as a fragment of the adjacent Haag 

basement (Garrett et al., 1987; Golynsky and Aleshkova, 1997a), and a suture between East 

and West Antarctic crust has been proposed in this region (Golynsky and Aleshkova, 1997b). 

In contrast, the Berkner Island anomaly was interpreted as indicating a major Jurassic 

igneous intrusion (Behrendt et al., 1981; Hunter et al., 1996; Johnson et al., 1992), although 

Ferris et al. (1998) re-interpreted the Berkner Island anomaly as a basement block. There is 

no clear-cut way to distinguish the basement and intrusive interpretations of the SWMP 

magnetic data.  However, it is known that magnetic basement provinces typically retain the 

older basement fabric, despite overprinting by later tectonic events (Ferraccioli and Bozzo, 

1999; McLean et al., 2009). All the major SWMP anomalies trend approximately orthogonal 

to the magnetic fabric in the adjacent Haag and Shackleton basement provinces, suggesting 

an origin for the SWMP structures distinct from the adjacent basement (Fig. 4b). We 

therefore propose that the SWMP anomalies reflect dominantly magmatic features, which 

trace the rift fabric that developed during Jurassic extension. Both intrusive and extrusive 

magmatism would be expected to focus along extensional fault systems. Significant Jurassic 

magmatism within the SWMP would be consistent with the proximity of the proposed 
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mantle plume which gave rise to the extensive Karoo-Ferrar LIP (Elliot, 1992; Elliot and 

Fleming, 2000; Ferraccioli et al., 2005a; Jourdan et al., 2005; Riley et al., 2005).  The 

interpreted Jurassic magmatism beneath Berkner Island may follow the trace of the 

inherited Gondwanide Orogen that has been inferred to continue north of the Pensacola 

Mountains (Dalziel pers. com 2016), and is suggested based on relatively low mid crustal 

velocities from seismic refraction data (Leitchenkov and Kudryavtzev, 1997). Crustal 

thickness from both seismic and gravity data indicate that the crust beneath Berkner Island 

is highly attenuated supporting the interpretation that Jurassic extension and magmatism 

are likely to be the dominant process controlling the magnetic signatures in this region.   

Although we interpret the SWMP magnetic anomalies as igneous intrusions, 

our Bouguer anomaly map (Fig. 3b) does not reveal associated significant (>50 mGal) 

localised positive anomalies, as seen for example over other large mafic intrusions such as 

the Bushveld complex e.g. (Kgaswane et al., 2012). We therefore suggest that the intrusions 

underlying the SWMP magnetic anomalies most likely consist of a mixture of dense mafic 

rocks and lower density silicic-intermediate rocks. This would be consistent with the 

recognition of locally significant volumes of silicic rocks of the Chon Aike province 

(Pankhurst et al., 1998), the wider inferred ignimbrite flare-up in the developing Scotia arc 

region (Dalziel et al., 2013) and the significant silicic component of the Lebombo Monocline 

in southern Africa (Cleverly et al., 1984; Klausen, 2009).   

In contrast to the SWMP, the highly magnetic NWMP is dominated by 

magnetic anomalies with a NE-SW trend, approximately parallel to the strike of the adjacent 

Explora Anomaly (Fig. 4 and 6). The Orion Anomaly, defining the northern edge of the 
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NWMP, trends ~E-W and is therefore slightly oblique the rest of the NWMP anomalies. 

These anomalies have been interpreted and modelled previously as mid-crustal intrusions 

and underplated material within the transitional continental crust inboard of the 

continent/ocean boundary (Ferris et al., 2000). We agree with this interpretation and our 

new Bouguer gravity anomaly map (Fig. 3b) confirms that the NWMP lies in the transitional 

region between extended continental and thinner oceanic crust. Precise dating of the 

NWMP structures is not possible. The proximity and coincident strike of the adjacent 

Explora Anomaly suggests emplacement at a similar time. The Explora Anomaly is thought 

to be conjugate to the 185 to 174 Ma magmatism in the Lebombo Monocline in southern 

Africa (Jourdan et al., 2005; Kristoffersen et al., 2014). Additionally, recent analysis has 

revealed Early-Middle Jurassic (~178 Ma) mafic rocks on the eastern margin of the Antarctic 

Peninsula (Riley et al., 2016) (Fig. 4a). Together this dating evidence suggests that the 

intervening NWMP magmatic structures were most likely emplaced coincident with Karoo-

Ferrar magmatism.  

The complex array of lineations with a dominant NE-SW trend in the NWMP 

lead us to propose alternative extensional or transtensional models for this region. The 

pattern of apparently diverging lineations is consistent with that of a ‘horse tail’ splay close 

to the end of a major strike slip fault system (Kim and Sanderson, 2006; Mouslopoulou et 

al., 2007). Regions where fault systems are of a similar scale to those we propose in the 

NWMP include, for example, the end of the Babahoyas Fault in the Ecuador forearc region 

(Kim and Sanderson, 2006), and the termination of the North Island Fault System in New 

Zealand (Mouslopoulou et al., 2007). Discontinuities in the dominant NE-SW fabric of the 

NWMP could reflect linking fault systems, or evidence of later extension. Previous models of 
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the NWMP region suggested the development of a complex triple junction in response to a 

tri-axial strain regime (Ferris et al., 2000). This interpretation was based on recognition of an 

additional series of NW-SE trending lineations, which separated the NE-SW structures into a 

series of non-magnetic lozenge shapes in plan view. In our new compilation we do not 

recognise the proposed NW-SE trending lineations as major structures (Fig. 4b), and 

therefore prefer a simpler extensional or transtensional model for this region. An 

extensional model would be consistent with tectonic models for the earliest stages of rifting 

between South African and East Antarctica (Klausen, 2009; Kristoffersen et al., 2014). 

However, a transtensional model would be consistent with some regional reconstructions of 

later Gondwana breakup, which show dextral strike slip motion extending directly along 

strike from the Explora Anomaly (Klausen, 2009). Models for the subsequent earliest stages 

of ocean spreading, which likely followed on from development of the NWMP, also suggest 

oblique divergence at this margin (Eagles, 2016; Eagles and Vaughan, 2009).   

The nature of the western edge of the NWMP in the region of the Antarctic 

Peninsula is not clear. A rifted or strike slip margin to the Weddell Sea Rift System may have 

been present in Jurassic times, or the NWMP structures may have extended into the region 

of the present day Antarctic Peninsula. However, overprinting by Cretaceous magmatism 

and orogenic processes largely obscures the older structures within the Antarctic Peninsula 

(Burton-Johnson and Riley, 2015; Storey and Garrett, 1985; Vaughan et al., 2012). In 

addition, the precise position of the Antarctic Peninsula relative to the WSRS in Jurassic 

times is not well constrained (Miller, 2007).  Detailed aeromagnetic studies of the eastern 

margin of the Antarctic Peninsula have suggested that magnetic structures may continue 

onshore from the WSRS (Ferris et al., 2002). More extensive and detailed geophysical 
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studies, coupled with geochronological and geological investigations may be able to trace 

the full extent of the Jurassic NWMP structures into and potentially across the Antarctic 

Peninsula, constraining our interpretation further.   

 

4.3 Crustal architecture of the Weddell Sea Rift System 

 

Our new Bouguer gravity compilation shows that the WSRS is associated with 

Bouguer anomalies close to zero mGal, and linear positive anomalies are associated with the 

flanks of the rift system (Fig. 3b). This pattern is consistent with the WSRS being a region of 

thinner crust relative to the surrounding crustal blocks of both West and East Antarctica, 

which are marked by strong Bouguer anomaly lows. The presence of a seismically imaged 

12-15 km thick sedimentary basin within the WSRS, coupled with thin crust is also consistent 

with very significant crustal extension in the WSRS region (An et al., 2015a; Leitchenkov and 

Kudryavtzev, 1997). The magnetically mapped extent of igneous bodies within the WSRS 

indicates that they cover ~50% of the WSRS (Fig. 4b). Depth to source analysis suggests that 

most of the magnetic sources lie at or below the base of the seismically imaged sedimentary 

basin (Fig. 7a). These interpreted magmatic bodies therefore most likely represent 

significant volumes of syn-rift magmatism that is underlain by a seismically imaged high 

velocity lower crustal layer, interpreted as a mafic underplated layer (Leitchenkov and 

Kudryavtzev, 1997).  Large amounts of distributed crustal extension and a high volume of 

rift related magmatism support the interpretation that the WSRS is a highly extended 

terrane, as suggested by Dalziel and Lawver (2001). To test if this interpretation is consistent 
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with the observed potential field data we construct two simple forward gravity and 

magnetic models across the WSRS. Specifically, we assess if the presence of significant 

underplating, intra-crustal magmatism, thin residual crust and a thick overlying sedimentary 

basin is consistent with observed potential field signatures.   

 

 

Figure 7. 2D potential field models and geological interpretation. See Fig. 6 for location. a) 

Profile constrained by seismic refraction data (Leitchenkov and Kudryavtzev, 1997) between 

Antarctic Peninsula (AP) and Coats Land Block (CLB), crossing the Northern and Southern 

Weddell Magnetic provinces (NWMP and SWMP), and passing north of Berkner Island 

(BI(N)). Note the boundary between the NWMP and SWMP is not well defined. First (top) 

panel shows observed (grey) and modelled (red) magnetic anomalies. Second panel shows 

observed (grey) and modelled (red) Bouguer gravity anomalies. Third panel shows modelled 
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geophysical properties of the crustal structure, seismic interfaces and 2D Euler deconvolution 

depth to source solutions used to constrain the model. As the Bouguer anomaly is modelled 

the ice, water and background densities were all set to 2670 kgm-3. Lower panel shows 

geological interpretation. Note interpreted Jurassic underplating, and thick Jurassic 

magmatic bodies within the interpreted highly extended continental crust of the WSRS. 

Mesoproterozoic intrusions in the Coats Land block are inferred from the presence of 

exposed volcanics (Loewy et al., 2011).  b) Profile orthogonal to SWMP rift fabric. Panels as 

in (a). Note modelled extensive magmatism including underplated layer, and magmatic 

bodies required to match Korff (KA), Henry (HA) and Berkner Island (BI) magnetic anomalies. 

Also note thinned crust extending beneath the Haag basement block. Haag and CLB 

magnetic sources reflect basement sources rather than Jurassic magmatism. 

 

Our first 2D model of the crustal architecture (Fig. 7a), constrained to match 

both the Bouguer anomaly from our new compilation and crustal structure along the 

Russian seismic refraction line (Leitchenkov and Kudryavtzev, 1997) images both the NWMP 

and SWMP and the boundary between these provinces. The model includes a layer of dense 

material up to 9 km thick at the base of the crust required to match the observed gravity 

anomaly. This layer is interpreted as a magmatic underplate or series of lower crustal 

intrusions, which, as seen in other rifted margins, represents significant addition of juvenile 

mantle-derived material to the base of the crust (Thybo and Artemieva, 2013; White et al., 

2008). Additionally, depth to source analysis and modelling of the observed magnetic 

anomalies suggests that multiple magmatic bodies 4-8 km thick are present beneath the 
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seismically imaged sedimentary basin (Fig. 7a). Although the thickness of these bodies is 

uncertain, as they are only defined by potential field modelling, the source width (Fig. 4b) 

and anomaly amplitude suggests that they do reflect a significant proportion of the crustal 

layer beneath the seismically imaged sedimentary basin. If these bodies were emplaced 

coincident with the Karoo-Ferrar LIP we suggest that it is likely that they also reflect an 

additional significant juvenile magmatic addition to the crust, as the wider Karoo-Ferrar 

province has an almost exclusively mantle source (Leat, 2008). The model indicates similar 

crustal structure beneath the NWMP and the SWMP, suggesting they have similar rifted 

crust. The model supports the interpretation of highly extended crust in both provinces of 

the WSRS. 

Our second 2D model images the southern part of the SWMP (Fig. 7b). It 

shows overall crustal thickness in the rift is 5-10 km thinner than the adjacent regions, 

indicative of significant crustal extension. Given the presence of a thick sedimentary basin, 

suggested by magnetic depth to basement solutions, an extensive dense underplated body 

at the base of the crust is required along the modelled profile. Within the highly extended 

residual crustal layer significant 5-10 km thick magmatic bodies are modelled. Together 

these structures confirm that rift-related magmatic bodies make up a significant proportion 

of the crustal column.   Our models support the hypothesis that a highly magmatic and 

highly extended continental terrane extends southward from the Coats Land margin right 

across the SWMP and the adjacent part of the NWMP. 

Our 2D crustal models provide an indication of the amount of extension and 

β factors that occurred within the Jurassic WSRS. To calculate the amount of extension 
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across the SWMP we use a simple area-balance method e.g. (Huismans et al., 2002). This 

technique assumes that all the residual continental crust (i.e. excluding syn- to post-rift 

sediments and all juvenile magmatic additions) was originally a single pre-rift crustal layer of 

uniform thickness. We applied this technique to the SWMP model as it is approximately 

orthogonal to the apparent magnetic rift fabric, and is not truncated by the more recent 

Antarctic Peninsula arc magmatism. The modelled 2D cross-sectional area of residual crust, 

including the region of thinned crust beneath Haag, is 17820 km2. Assuming an original 

crustal thickness of between 35 and 40 km, approximately consistent with the adjacent 

Coats Land and EWM regions, predicts a pre-rift crustal block 509 and 446 km wide. As the 

SWMP rifted region is today ~1000km km wide this equates to extension of between 96% 

and 124%, a regional β stretching factor of 1.9 to 2.2, and between 490 and 550 km of EWM 

translation. If pre-rift crustal thickness was thicker (~60 km) due to the Gondwanide 

orogeny the pre-rift crustal block would still have to be ~300 km wide and ~700 km of 

translation of the HEW would be suggested. However, studies of other parts of the 

Gondwanide orogen, such as the South African Cape Fold Belt (Stankiewicz et al., 2002; 

Tedla et al., 2011) and Patagonia (Chulick et al., 2013) suggest crustal thicknesses between 

30 and 40 km would be more typical.  

Our conceptual model for the SWMP is that magmatism was driven by the 

upwelling Karoo-Ferrar mantle plume, while extension was facilitated by a tectonically ‘free 

edge’ towards the Paleo-Pacific margin (Fig. 8).  We infer that this free edge was most likely 

associated with a subduction system, given the presence in the Permian of a magmatic arc 

proximal to the EWM (Elliot et al., 2016), and the extensive Middle to Upper Jurassic Latady 

back-arc basin along the eastern edge of the Antarctic Peninsula (Laudon, 1992).  Within the 
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SWMP we suggest that plume-related magmatism gave rise to the modelled magmatic 

underplate and mid to upper crustal magmatic bodies (Fig. 7). The strong linear fabric 

observed within the SWMP (Fig. 4b) indicates that the mid to upper crustal magmatic bodies 

were localised along fault systems, which developed in response to the regional extension.  

Towards the Haag region, crustal thinning relative to the adjacent Ellsworth 

Mountains is observed, potentially reflecting unroofing of the Haag block along low angle 

detachment faults in the Jurassic (Fig. 8). Although un-roofing of the Haag block can account 

for some crustal thinning in this region, we suggest that lower crustal flow also played a 

role.  In this scenario lateral crustal flow from beneath the Haag block towards the SWMP 

would have been driven by the developing lateral pressure gradient within the lower crust 

as the SWMP thinned. Lower crustal flow, in effect ‘borrowing’ material from adjacent 

regions to facilitate upper crustal extension in the adjacent rift, has been proposed for other 

highly extended terranes such as the Basin and Range province in the US (Snow and 

Wernicke, 2000). The processes of lower crustal flow requires unusually low viscosities in 

the lower crust (McKenzie and Jackson, 2002), which would have been facilitated by 

magmatism and heating due to the Karoo/Ferrar LIP.   
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Figure 8. Interpretative sketch of the Jurassic tectonic and magmatic setting of the Weddell 

Sea Rift System. Structures in colour are derived from our modelling and interpretation of 

geophysical data between Coats Land and HEW. Dotted lines denote inferred Jurassic West 

Antarctic and Paleo-Pacific margin. Note inferred HEW exotic crustal block transferred from 

East Antarctica by crustal extension in the WSRS. WSRS extension was potentially enhanced 

by plume related magmatism and flow of lower crustal material from beneath the now 

thinned Haag region. 

 

5 Discussion  

The origin of the WSRS as a broad continental rift system is widely accepted 

(Dalziel, 2013; Studinger and Miller, 1999) and confirmed by our study. The contrasting 

magnetic signatures and trends within the SWMP and NWMP provinces provide further 

clues to the tectonic and magmatic processes that affected the WSRS. In addition, 

understanding the crustal architecture and evolution of the WSRS has important 
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implications for re-assessing from a geophysical perspective the potential magnitude and 

mechanisms of HEW crustal block motion, as discussed hereafter.  

 

5.1 Tectonic evolution of the Weddell Sea Rift System from a geophysical perspective. 

 

Our new aeromagnetic compilation shows that the E/W trending NWMP 

structures appear to truncate the approximately N/S oriented SWMP structures (Figs. 4 and 

6). The simplest tectonic model for the evolution of this region is therefore that the SWMP 

and NWMP reflect distinct early and later phases of inferred Jurassic rifting. In this scenario 

the SWMP structures reflect a relic of a relatively older rift system that formed in an 

extensional back-arc setting located between the active Paleo-Pacific margin and the 

interior of Gondwana (Fig 9a). The PSZ would mark the southern end of the rift system, 

where extension was largely terminated along a sinistral strike-slip fault system located at 

the edge of the more rigid East Antarctic lithosphere  (An et al., 2015b). The Jurassic back-

arc basin fill of the Latady Formation along much of the south eastern Antarctic Peninsula 

(Laudon, 1992), would be consistent with such an extensive back-arc basin. In this scenario, 

the change in trend of the SWMP anomalies between Berkner Island and the Henry and Korf 

Anomalies to the west (Fig. 4 and 6) could reflect a changing extension direction with time, 

and would imply ~30° rotation of the margin relative to East Antarctica.   

If the SWMP reflects a relatively older rifted region, the NWMP can then be 

explained as a separate phase of rifting, which cross cuts and overprints the SWMP (Fig. 9b). 

Eastwards along strike from the NWMP is the Explora anomaly, linked to a narrow but highly 
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magmatic rift zone, which developed during the initial separation between South Africa and 

East Antarctica, with coincident emplacement of Karoo magmas (Kristoffersen et al., 2014). 

We suggest that, where the narrow South Africa/East Antarctic rift intersected the pre-

existing SWMP back-arc basin, distributed rifting developed over a wider area, explaining 

the broad triangular shape of the NWMP (Fig 9b). Such a change from narrow-mode rifting 

of a rigid craton to distributed rifting within an already extended back-arc is consistent with 

numerical models of continental rifting, which predict more distributed rifting in regions 

with weaker lithosphere (Gueydan et al., 2008). This phase of NWMP extension was 

potentially coincident with the initial separation of the Falkland Island plateau from the 

WSRS region as suggested by some previous authors (Ferris et al., 2000). The present day 

position of the NWMP adjacent to the oceanic crust of the Weddell Sea, and the apparently 

highly magmatic nature of this region, would be consistent with NWMP rifting being the 

pre-cursor to the development of a highly magmatic ocean- facing rifted margin.     
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Figure 9. Cartoon showing two phase extensional model for the evolution of 

the WSRS. a) Early phase of back-arc extension gives rise to N/S oriented SWMP structures. 

b) Later phase of rifting between South Africa and East Antarctica creates NWMP, cross 

cutting older SWMP. Note in these sketches the Antarctic Peninsula is shown in its present 

day position. Structures beneath the present day Antarctic Peninsula are inferred, as this 

region is overprinted by Cretaceous arc processes, and the Jurassic position of the Antarctic 

Peninsula is not well constrained. Also note the extent and the independent rotation or 

translation of the Falkland Island block (FI) is not considered in these simple sketches. 
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 It is possible that the SWMP extension continued while the inferred rift 

forming the NWMP developed, with relative motion taken up within transtensional shear 

zones. The resolution of our data makes it difficult to uniquely define the cross cutting 

relationships between the SWMP and NWMP structures, and hence their relative timing. 

Both regions are interpreted to be highly magmatic, which could be consistent with their 

development broadly synchronously with the regionally extensive Jurassic Karoo-Ferrar LIP. 

From our TDX enhancement (Fig. 4b) and terrace map (Fig. 5a) it is apparent that the NWMP 

contains more numerous anomalies, and is generally more magnetic than the SWMP. This 

suggests that the NWMP was associated with a distinct peak in magmatism, and hence 

developed as separate structure from the SWMP and was potentially more precisely 

coincident with the Karoo Ferrar LIP.  
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Figure 10. Cartoon showing possible scenarios for synchronous formation of 

Weddell Sea Rift System magnetic fabric. a) Simultaneous left lateral motion of PSZ and 

NWMP create a distributed transtensional releasing bend forming SWMP. b) Synchronous 

conjugate sinistral PSZ and dextral NWMP allows extensional SWMP to develop. 

 

An alternative to a two phase model for the WSRS evolution is that the 

NWMP and SWMP structures developed simultaneously as part of a regional scale 

transtensional fault system (Fig. 10a or b). In this scenario the PSZ and NWMP represent 

shear zones, linked by the broadly extensional SWMP. The abrupt change in strike between 

NWMP and SWMP reflects the transtensional and extensional parts of the system 
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respectively. One end member of this synchronous model is that the WSRS develops as a 

sinistral pull-apart basin. In what is effectively a two plate model the entire sector of the 

Paleo Pacific margin north of the PSZ moved away from East Antarctica (Fig. 10a). 

Alternatively the NWMP structure could represent a conjugate dextral shear zone which 

formed a separate link to the Paleo Pacific margin (Fig 10b). This would mean that the 

extension within the SWMP requires only relatively localised differential movement along 

the Paleo Pacific margin. Later Cretaceous deformation and magmatism within the Antarctic 

Peninsula has significantly overprinted any earlier structures. This makes resolving any 

continuation of the NWMP into or across the Antarctic Peninsula with the currently 

available data challenging, although the presence of a large-scale Beaumont shear zone, 

which may have been active in Late Jurassic to Early Cretaceous time has been suggested 

(Ferris et al., 2002).  

One commonality between the three models for the evolution of the WSRS 

laid out above is that the structures we image within the WSRS can be explained by 

relatively simple combinations of extension and strike-slip faulting within an extensional rift 

setting.  Also, irrespective of whether the development of the SWMP and NWMP were 

synchronous or not, all our models for the evolution of the WSRS suggest extension of the 

SWMP province towards the Paleo Pacific margin played a critical role. Such extension must 

have been facilitated by a tectonically free edge along the Paleo Pacific margin. We 

therefore suggest that subduction processes such as slab roll back may have played an 

important role in facilitating lithospheric extension within the WSRS (Dalziel et al., 2013; 

Martin, 2007).  
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Although it is hard to confidently differentiate between the models for WSRS 

evolution we prefer the two phase model (Fig. 9a and b) as it most simply explains the 

observed structures, and is consistent with geological evidence for both an eastern Antarctic 

Peninsula back-arc basin and a highly magmatic rift zone between South Africa and East 

Antarctica. The synchronous models for NWMP and SWMP development should, however, 

not be ruled out, but likely require further testing with more detailed aerogeophysical data 

acquisition and careful consideration of the kinematic interplay between broadly sinistral 

WSRS extension and predominately dextral rifting inferred between South Africa and East 

Antarctica (Eagles, 2016; Klausen, 2009). We suggest that new surveys targeting the critical 

boundaries of the SWMP with the NWMP and PSZ could significantly constrain these 

alternative kinematic models.    

    

5.2 Far travelled Haag-Ellsworth Whitmore paradigm    

 

Most tectonic models indicate that, prior to the breakup of Gondwana, the 

HEW was in a pre-rotated orientation and located ~1500 km further north, adjacent to the 

Maud Belt (Fig. 11a) (e.g. Dalziel et al., 2013). From both a geological and an aeromagnetic 

perspective, juxtaposition of the Haag block against the Maud Belt (Fig. 11a) would seem 

logical. Both are regions with ~1 Ga crust, with similar isotopic compositions (Jacobs et al., 

2008; Storey et al., 1994), and our new compilation confirms that both the Haag and Maud 

belt are associated with relatively high amplitude aeromagnetic anomalies (Fig. 4a). The 

magnetic Haag block could therefore form a link between the formally adjacent Beattie 
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Magnetic Anomaly in South Africa and the East Antarctic Maud Belt (Mieth and Jokat, 2014). 

The rotated reconstruction of the HEW block aligns the structural fabric of the EWM Permo-

Triassic Gondwanide fold belt along strike with the Gondwanide and older Ross age 

structures in the Pensacola Mountains (Fig. 11a). A location of the EWM adjacent to Coats 

Land would be consistent with stratigraphic considerations that suggest the Ellsworth 

Whitmore sediments were deposited in a basin north of the Pensacola Mountains (Schopf, 

1969). In addition, the 90° tectonic rotation would explain the paleomagnetic data, which 

suggests this orientation for the Cambrian sediments (Grunow et al., 1987; Randall and 

MacNiocaill, 2004; Watts and Bramall, 1981). Together these factors have been taken as 

evidence to make a compelling case for the far travelled model.  

As noted above, the traditional far travelled model of the HEW is apparently 

well constrained by geological observations. None the less it remains challenging to 

reconcile the required movement of the HEW block (Fig. 11a) with the geophysical 

observations within the WSRS. Our 2D model of the SWMP crustal structure (Fig. 7) is most 

consistent with extension of just 500 km. In addition, our new models for the evolution of 

the WSRS (Figs. 9 and 10) indicate that the observed structures in the SWMP can be 

explained simply in terms of the interaction of crustal extension and potentially relatively 

simple strike-slip fault systems. In the traditional model, assuming the Gondwanide orogen 

continued through the Berkner Island region (Dalziel  pers. com. 2016), the HEW would first 

need to be translated ~650 km grid west before being translated ~650 km grid south to a 

position adjacent to Berkner Island. From this point extension of the Berkner Island region 

could have given rise to the ~500 km translation of the HEW and development of the SWMP 

suggested in our 2D crustal models. The predicted complex motion of the HEW creates an 
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obvious space problem. Initial westward translation of the HEW would require 

replenishment of continental crustal material adjacent to the Maud Belt and Grunehogna 

cratonic fragment. This could be accommodated by a combination of magmatism and lower 

crustal flow (Dalziel et al., 2013). However, the rigid lithosphere of East Antarctica and 

formerly adjacent South Africa would be an unlikely source of lower crustal material. 

Further block rotation and southward movement of the HEW into the SWMP region would 

be expected to lead to the generation of a complex array of faults each accommodating a 

component of the extension, strike-slip motion and associated magmatism. Although the 

proposed mechanisms for HEW motion are geologically plausible, it is challenging for the 

traditional model of HEW movement to explain both the apparent space problem and the 

lack of geophysical expression of the expected complex fault arrays. 

The traditional model suggests that the Haag is a displaced fragment of the 

wider Grenville Namaqua-Natal-Maud Belt. However, analysis of the long wavelength MF7 

satellite magnetic field indicates that the distinctive >120 nT positive anomaly over the HEW 

is unlike both the Maud Belt where a more subdued satellite field of <20 nT is observed (Fig. 

5b) and the conjugate South African Namaqua-Natal Belt where satellite magnetic 

anomalies between 10-60 nT are observed. Satellite magnetic data is typically a good 

predictor of regional basement provinces and has previously been used to map the extent of 

Meso- to Neoproterozoic rocks from Australia into the Terre Adelie margin of East 

Antarctica (Finn et al., 2006). The observed discrepancy between the satellite magnetic 

signal of Haag and the wider Namaqua-Natal-Maud Belt suggests that the underlying 

basement of these provinces differs. In addition, although both Haag and the Maud belt are 

areas with relatively high amplitude aeromagnetic anomalies, as noted by previous authors 
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(Golynsky and Aleshkova, 1997b), when rotated through 90° the trends of the Haag and 

Maud Belt anomalies do not align as expected (Fig. 9a). Hence from both a short and long 

wavelength magnetic perspective, juxtaposition of Haag with the Maud Belt is questionable.  
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Figure 11. Different reconstructed pre-Jurassic positions of the HEW block and proposed 

subsequent HEW motion (arrows). Background image is the magnetic anomaly map. Strong 

colours show reconstructed HEW and other pre-Jurassic crustal provinces of East Antarctica. 

Muted colours show present magnetic anomalies synchronous or postdating translation of 

the HEW block.  Thin yellow lines trace Gondwanide fold structures. Solid black line shows 

present location of HEW, and interpreted Jurassic structural features. Dashed red lines show 

magnetic trends in East Antarctic blocks and reconstructed HEW. a) HEW adjacent to the 

Maud Belt with 90° rotation e.g. (Curtis, 2001; Randall and MacNiocaill, 2004, Dalziel et al., 

2013). Dashed outlines show intermediate positions for the HEW assuming Berkner Island 

(BI) contained a continuation of the Gondwanide orogen. b) Our proposed new 

reconstruction that places the HEW within the WSRS and predicts ~500 km of 

southwestwardly translation accompanied by more limited (ca 30°) Jurassic rotation. Note 

evolution of the structures in the NWMP is not constrained here. Also note the alignment of 

Haag/Shackleton magnetic trends in our preferred reconstruction.  

 

5.3 Alternative less far travelled Haag-Ellsworth Whitmore block model  

 

We propose an alternative less far travelled HEW model (Fig. 11b) based on 

the modelled amount of crustal extension and pattern of observed lineations within the 

WSRS. In our model, the HEW block was located ~500 km northeast of its current location 

prior to extension in the SWMP (Fig. 11b), which is compatible with the ~500 km of crustal 

extension predicted by our 2D gravity model. The inferred pre-extension location of the 
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HEW remains consistent with the stratigraphic interpretation of the position of the EWM 

north of the Pensacola Mountains (Schopf, 1969) and is consistent with mineralogical and 

paleontological provenance studies suggesting the Ellsworth Mountains sediments were 

sourced from the Transantarctic region of East Antarctica (Elliot et al., 2016; Stone and 

Thompson, 2005). The motion of the HEW in this less far travelled model would be 

consistent with either the proposed two stage, or more complex single stage tectonic 

models for the evolution of the WSRS magnetic lineations (Figs. 9 and 10). In all these 

models the HEW block would have been rifted from East Antarctica by extension in the 

SWMP and transferred to West Antarctica. Our geophysical data suggests limited rotation of 

~30° during SWMP extension, reflected by the apparent change in strike of the SWMP 

anomalies (Fig. 4 and 6). 

Our simplified reconstruction predicts that the high amplitude magnetic 

anomalies within the Haag block lie directly along strike from the Shackleton Range, which 

contains anomalies with a similar amplitude and overall trend (Fig. 10b). At the longer 

satellite wavelengths, the Haag and Shackleton Range also show very similar amplitude 

anomalies (Fig. 5b), supporting a possible link between these two regions.  

Although the alignment of the Haag and Shackleton regions is magnetically 

viable, there are significant and well documented geological differences between these 

regions. Magnetite rich gneisses in the Shackleton Range, modelled to be the main sources 

for the observed anomalies (Sergeyev et al., 1999), lie within a region of 1.6 to 1.8 Ga rocks 

(Buggisch and Kleinschmidt, 1999), while the exposed Haag rocks are dated to ~1.1 Ga 

(Storey et al., 1988a). Dating of the magnetic rocks identified by (Sergeyev et al., 1999) 
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could help to constrain the possible link between these two regions. Our simple model also 

juxtaposes apparently un-reworked Haag rocks with the terranes of the Shackleton Range, 

which were in many places affected by extensive deformation and metamorphism during 

the ~500 Ma EAAO (Buggisch and Kleinschmidt, 2007; Jacobs and Thomas, 2004). 

Nevertheless, minor outcrops within the eastern Shackleton Range do give ~1.06 Ga ages 

(Will et al., 2009), and have Hf isotope signatures almost identical to those exposed in the 

Haag Block, suggesting a link between these regions in Mesoproterozoic times is 

geochemically permissible (Will et al., 2010). In addition, although our model reconstructs 

the Haag and Shackleton Provinces as lying along strike, the sparse rock exposures in the 

Haag block are still over 350 km from the Shackleton Range in our reconstruction (Fig. 10b). 

Over such distances the impact of the EAAO may have been significantly reduced, as seen in 

the Maud Belt where some regions are overprinted by the EAAO, while others remain 

unaffected.  In addition, the Haag outcrop represents just ~0.001% of the wider 

geophysically defined block and may therefore not be totally representative.  

Our model also juxtaposes the EWM sedimentary sequences, which show no 

Cambrian deformation, with the approximately contemporary EAAO and Ross orogens. We 

suggest that the EWM sedimentary basin may have been decoupled from this Cambrian 

deformation by a long lived structural boundary approximately following the trend of the 

present day PSZ. Such decoupling of the EWM and East Antarctic deformation along a major 

tectonic discontinuity is also suggested in previous far travelled models for the HEW block 

(Curtis, 2001).   
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Although broadly consistent with geophysical observations and stratigraphic 

correlations, and arguably acceptable in terms of geological correlations, our simplified 

model for the movement of the HEW due to Jurassic extension of the SWMP fails to explain 

the misalignment of the structural trends in the HEW and Pensacola Mountains (Fig. 10b). It 

can also only account for only ~30° of the paleomagnetically estimated ~90° rotation of the 

Middle to Late Cambrian EWM sediments. This would suggest that rotation of the sediments 

and structural fabric within the EWM occurred prior to the Jurassic evolution of the SWMP, 

which from a geophysical perspective, shows little evidence for rotation. One possible 

model for rotation of the EWM sedimentary sequences is that it occurred during the 

extensive Permo-Triassic Gondwanide orogeny. Structural considerations suggest that this 

region was dominated by dextral transpression (Curtis, 2001). We propose that, after initial 

dextral deformation, the sediments and structural trends of the EWM region were rotated 

by ~60°. This would be consistent with our interpretation of the EWM being a separate 

province to the Haag basement within the wider HEW. 

Observations in other parts of the Gondwanide Fold Belt show that it did not 

develop as a linear structure. Within the South African portion of the orogen two distinct 

40-80° bends in the structural trend are seen, the Cape Syntaxis and Port Elizabeth Antaxis 

(Johnston, 2000). These oroclinal bends are inferred to be related to the overall dextral 

sense of motion and are suggested to explain at least part of the rotation of the Falkland 

Island block (Johnston, 2000). Previous authors have suggested that rotations of the EWM 

block may represent the accommodation of a collision that generated the Gondwanide fold-

thrust belt along the cratonic margin of Gondwana (Dalziel and Grunow, 1992). The trigger 

for these rotations may have been collision of the Thurston Island block with the Paleo 
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Pacific margin (Dalziel and Grunow, 1992), or possibly variation in marginal processes such 

as flat subduction or differential slab roll back (Dalziel et al., 2013).   

Both the traditional far travelled and more local HEW models have the power 

to explain many of the geological and geophysical observations within the Weddell Sea 

region. Regardless of the uncertainties surrounding the mechanisms of crustal block 

rotation we favour the less far travelled HEW model as overall it explains the geophysical 

observations better, and implies a much simpler model of crustal extension within the 

WSRS. We do acknowledge, however, that there are problems with some of the geological 

and structural correlations predicted from our less far travelled HEW model. However, we 

contend that further geological and paleomagnetic investigations are required to provide 

more evidence to either validate or refute our new geophysical interpretations. In addition, 

higher resolution aerogeophysical observations of the WSRS and its northern and southern 

boundaries are also required in order to test our alternative kinematic interpretations.  

 

6 Conclusions  

 

Our compilation of aerogeophysical datasets provides new insights into the 

crustal architecture of the Jurassic Weddell Sea Rift System. The magnetic anomaly patterns 

within the rifted region are dominated by simple linear structures, grouped into two distinct 

crustal provinces. Anomalies in the northern province trend approximately E/W and appear 

to crosscut the approximately N/S trending anomalies of the southern province.  We 

interpret these anomalies as reflecting Jurassic rift-related magmatism controlled by major 
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fault systems within the broader rift system. The contrasting aeromagnetic trends lead us to 

suggest that the Weddell Sea Rift System reflects the intersection of two distinct phases of 

rifting: an earlier N/S trending back-arc rift system located inboard of the Paleo Pacific 

active margin, and the later E/W trending rift that developed between South Africa and East 

Antarctica. This later E/W rift system was potentially the conjugate to the Falkland Island 

Plateau, and may have developed as a pre-cursor to the rifted continental margin of 

Antarctica. The lack of geochronological constraints on the inferred Jurassic rifting and 

magmatism, coupled with the reconnaissance nature of the available potential field 

datasets, means that we cannot rule out the possibility that the two provinces within the 

Weddell Sea Rift System rifts overlapped in time, or that the two provinces developed 

synchronously in an overall transtensional tectonic regime.  

The pattern of anomalies across the southern Weddell Sea Rift System 

indicates that an extensional rift system developed between the Haag-Ellsworth Whitmore 

Mountains region and East Antarctica. A combined model of the gravity and magnetic 

anomalies shows that the region of thinned crust is ca 1000 km wide and extends beneath 

the Precambrian Haag province itself. The rift system is modelled as containing a broad 

sedimentary basin up to 10 km thick and significant magmatism, including ~5km of 

underplated material and 4-8 km thick intracrustal Jurassic intrusions/volcanics. A β 

stretching factor of 1.9 to 2.2, corresponding to ~500 km of extension in the Weddell Sea 

Rift System is derived from our crustal modelling.  

Airborne and satellite magnetic data confirm that the Haag-Ellsworth 

Whitmore region is a composite crustal block, distinct from the presently adjacent West and 
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East Antarctic crustal blocks. This supports the idea that the Haag-Ellsworth Whitmore 

region is a distinct crustal block.   

Our geophysical interpretation places new constraints on the amount of 

potential Jurassic Haag-Ellsworth Whitmore crustal block movement associated with 

extension in the Weddell Sea Rift System during the breakup of Gondwana. Although 

consistent with  geological and paleomagnetic observations the traditional far travelled 

paradigm predicting up to 1500 km of movement for the Haag-Ellsworth Whitmore block is 

hard to reconcile with the more limited (~500 km) extension predicted by our 2D gravity 

models, and the simple extensional rift fabric we imaged within the southern Weddell Sea 

Rift System. Additionally, the far travelled model is shown here to juxtapose East Antarctic 

and Haag Precambrian basement blocks that differ both in terms of short wavelength 

magnetic trends and longer wavelength magnetic anomaly pattern.     

We propose an alternative ‘less far travelled’ model with the Haag-Ellsworth 

Whitmore crustal block already located within the Weddell Sea Rift System region prior to 

Jurassic extension. Our interpretation places the Haag block closer to the Shackleton Range 

in a pre-rift configuration, as opposed to the conventional juxtaposition with the Maud Belt. 

Although favoured from a geophysical perspective, we acknowledge that our alternative less 

far travelled model appears to juxtapose basement provinces with apparently dissimilar 

geological histories and it only accounts for ca 30° of the paleomagnetically and structurally 

proposed 90° rotation of the Ellsworth Whitmore crustal block.  We suggest that regional-

scale deformation, associated with the Permian Gondwanide Orogen, may account for the 
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additional ~60° rotation of the Ellsworth Whitmore sediments, helping reconcile our new 

geophysical interpretation with previous geological and paleomagnetic interpretations.  

Although there is as yet no categorical way to decide between the two 

proposed models for movement of the Haag-Ellsworth Whitmore crustal block we prefer 

the less-far travelled model. The traditional far travelled model is well established but we 

argue that it may be easier to explain the geological discrepancies than account for how the 

far travelled model could produce the observed geophysical signatures. The proposed less 

far travelled block model still implies ~500 km translation of a distinct Haag-Ellsworth 

Whitmore block.  
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Research Highlights: 

 Two distinct aeromagnetic provinces identified within the Weddell Sea Rift System 

 Approximately 500 km continental extension suggested by 2D potential field models 

 Alternative simple model for tectonic evolution of Weddell Sea Rift System proposed 


