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ABSTRACT

Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves, but an

understanding of what determines melt rates is hampered by limited knowledge of the buoyancy- and fric-

tionally controlled flows along the ice shelf base that regulate heat transfer from ocean to ice. In an attempt to

address this deficiency, a simple model of a buoyant boundary flow, considering only the spatial dimension

perpendicular to the boundary, is presented. Results indicate that two possible flow regimes exist: a weakly

stratified, geostrophic cross-slope current with upslope flow within a buoyant Ekman layer or a strongly

stratified, upslope current with a weak cross-slope flow. The latter regime, which is analogous to the steady

solution for a katabatic wind, is most appropriate when the ice–ocean interface is steep. For the gentle slopes

typical of Antarctic ice shelves, the buoyant Ekman regime, which has similarities with the case of an un-

stratified density current on a slope, provides some useful insight. When combined with a background flow, a

range of possible near-ice current profiles emerge as a result of arrest or enhancement of the upslope Ekman

transport. A simple expression for the upslope transport can be formed that is analogous to that for the wind-

forced surface Ekman layer, with curvature of the ice shelf base replacing the wind stress curl in driving

exchange between the Ekman layer and the geostrophic current below.

1. Introduction

Floating ice shelves compose only 3%, by volume, of the

Antarctic Ice Sheet, but they receive over 80% of the out-

flow of grounded ice (Rignot et al. 2013) and play a critical

role in regulating that outflow. The processes of iceberg

calving and basal melting that remove mass from the ice

shelves are therefore of first-order importance in de-

termining the overallmass budget of the ice sheet andhence

its contribution to eustatic sea level. Basal melting in par-

ticular has been highlighted as the driver of ice shelf thin-

ning that has been causally linked with acceleration in the

outflow of grounded ice (Pritchard et al. 2012). What de-

termines the distribution and rates of basal melting beneath

an ice shelf and how these respond to changes in ocean

temperature or circulation are therefore key questions.

Recent years have seen major progress in our ability to

quantify basal melting beneath ice shelves (Corr et al.

2002; Jenkins et al. 2006; Rignot et al. 2013; Depoorter

et al. 2013), providing a wealth of data to test the skill of

numerical models of the sub–ice shelf circulation. How-

ever, the rates of mass transfer between ice and ocean

that are predicted even by state-of-the-art, primitive

equation models remain sensitive to the choice of poorly

constrained parameters, particularly in the vertical mix-

ing schemes used (Dansereau et al. 2014). The tight

coupling between turbulent transfer to the ice and the

buoyancy forcing that is a key driver of the subice circu-

lation means that any deficiencies in the simulation of

melting will have widespread impacts on the ocean dy-

namics that must be compensated for by adjustment of

other parameters. The inevitable nonphysical tunings

make simulations that are unconstrained by observation

problematic.

To date we have only limited observations from within

the oceanic boundary layer beneath ice shelves, and the

majority of those data lack the resolution needed to

understand the dynamics of, and mixing within, the

boundary flows (e.g., Nicholls et al. 2009). As a result,

parameterizations of the boundary layer beneath ice

shelves are typically derived from the comparatively rich

database of observations within the turbulent boundary

layer beneath sea ice (e.g., Holland and Jenkins 1999).

While the fundamental physics governing the ice–ocean

boundary layer are not dependent on the form of the ice
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cover, there are subtle differences in the forcing that alter

the structure of the boundary layer.

In the case of sea ice, flow and mixing in the boundary

layer are generated by wind forcing of the ice motion and

the buoyancy fluxes associated with ice growth and abla-

tion (McPhee 2008).Other than the solid upper boundary,

the processes are much like those that operate elsewhere

at the ocean surface. A key distinction of the ice shelf–

ocean boundary layer is that the ice shelf provides a solid,

static boundary overlying the ocean. Current shear within

the boundary layer is produced by drag on the far-field

flow driven by externally imposed pressure gradients,

rather than by an externally imposed stress on the surface

of an otherwise relatively slow-moving water column. The

ice shelf–ocean boundary layer should thus lookmore like

the bottom boundary layer of the ocean.

Another key difference is the large-scale slope of the

boundary induced by the temporal thinning of the floating

ice shelf as it flows from the grounding line to the calving

front. In some respects the inverted topography of the ice

base is no different from the topography of the seabed at

the continental shelf edge, and the impact of a sloping

boundary on processes within the bottom boundary layer

has been discussed by Garrett et al. (1993), for example.

However, there is a critical difference between the seabed

and the ice shelf base: the latter is a reactive boundary.

Hence, the stable boundary layer created by ablation of

the ice shelf base is subject to a buoyancy force acting up

the slope. The result should be a boundary current having a

velocity maximum some distance below the ice–ocean in-

terface and reversed shear below as the buoyancy force

reduces and the current relaxes to the far-field flow. This

structure is analogous to that formed by a dense current

on a seabed slope that has been investigated in the context

of overflows frommarginal seas (Price andBaringer 1994).

However, there are key differences in that the properties

of an overflow are set externally by the processes supplying

the dense water and subsequent mixing acts to homoge-

nize the current and reduce the density difference. For the

ice shelf–ocean boundary flow, the properties are set by its

interaction with the slope and that interaction provides a

continuous stabilizing buoyancy flux.

Such a boundary flow has no analog in the ocean and is

most similar to the katabatic flow in the atmospheric

boundary layer that is generated when there is a surface

temperature inversion over sloping topography. Katabatic

winds are most well-developed and persistent over the

polar ice sheets where the inversion is caused by the net

radiation loss at the surface (van den Broeke and van

Lipzig 2003). Thus, unlike the ice shelf–ocean boundary

current, the buoyancy forcing is externally imposed rather

than generated by the reaction of the boundary to the

physical properties of the fluid within the boundary layer.

This further added complexity makes the ice shelf–ocean

boundary current a fascinating fluid dynamical problem in

its own right, irrespective of its importance in controlling

the direct exchange ofmass between ice sheets and oceans.

2. Motivation

The conceptual picture of ice shelf–ocean boundary

currents has tended to be dominated by plume theory,

which was first applied to the problem by MacAyeal

(1985). The boundary current is assumed to be vertically

well-mixed and only the depth-averaged properties are

considered. This assumption draws on the analogy with

density currents descending seabed slopes (Price and

Baringer 1994) but may not be valid when the interaction

of the boundary with the plume induces a stabilizing

buoyancy flux, as is the case when an ice shelf melts. Al-

though the three-dimensional, primitive equation models

that have been applied to the problem have the potential

to simulate the vertical structure of a plume, they gener-

ally lack the resolution, and arguably the physics, to

simulate a buoyancy-forced boundary flow, particularly

on a steep slope. Observations typically show some

stratification close to the ice shelf base (Nicholls et al.

2009; Hattermann et al. 2012; Stanton et al. 2013), but

measurements of the associated current profiles that result

from the stratification and furthermore generate the tur-

bulence that drives the exchange of heat, freshwater, and

momentum between ice and ocean are completely lack-

ing. Thus, there are real gaps in our understanding of the

ocean flow along an ice shelf base, and filling some of

those gaps is the motivation for this study.

The aim is to investigate the structure of the ice shelf–

ocean boundary flow using a simple model that in-

corporates just one spatial dimension, perpendicular to

the ice–ocean interface. Restriction to a single spatial

dimension is a severe limitation in that the great success

of the plume concept has been to demonstrate the fun-

damental role of advection within the boundary flow in

setting the water properties that drive the phase changes

at the ice–ocean interface. However, the aim is not to

produce a complete picture of the ice shelf–ocean

boundary current but rather to provide a complemen-

tary and hopefully informative insight into an aspect of

sub–ice shelf flow that has received little attention to date.

Furthermore, this initial study employs constant diffu-

sivity/viscosity in order to gain fundamental insight into

the nature of what is effectively a stratified Ekman layer

on a slope. Inclusion of a more realistic turbulence clo-

sure would be a simple extension of the model that is left

for a later study. The limitations of the model leave a

number of questions about real world ice shelf boundary

flows unanswered, but what does emerge is an alternative
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conceptual picture of the boundary layer and current that

may help to shape future observation andmodeling of ice

shelf–ocean interactions.

3. Model

The starting points for the derivation of the model are

the conservation equations for mass and momentum

written for conventional x0 (zonal), y0 (meridional), and

z0 (vertical) coordinates:

Dr

Dt
1 r= �U5 0,

r
DU

Dt
1 r2V3U52=P2 rgk1= � (rn= �U) .

In the above equations, U is a three-dimensional current

vector, P is pressure, t is time, r is water density, n is eddy

viscosity,V is Earth’s rotation vector, g is the acceleration

due to gravity, and k is a unit vector in the local vertical

direction (z0). The ice–ocean interface is assumed to be a

planar surface that makes an angle a with the horizontal.

A transformed coordinate system is defined by trans-

lation along z0 to set the origin at the ice–ocean interface;

rotation about z0 to give a y axis aligned with the ice–

ocean interface, perpendicular to the slope vector; then

rotation about y to give an x axis following the ice–ocean

interface, pointing directly upslope, and a z axis normal to

the interface (Fig. 1). Applying the above trans-

formations and the Boussinesq approximation gives

= �U5 0,

Du

Dt
1 2V[(cosu cosb)w2 (cosu sinb sina1 sinu cosa)y]52

1

r
0

›P

›x
2

r

r
0

g sina1= � (n=u),
Dy

Dt
1 2V[(cosu sinb sina1 sinu cosa)u1 (cosu sinb cosa2 sinu sina)w]52

1

r
0

›P

›y
1= � (n=y), and

Dw

Dt
1 2V[(cosu sinb cosa1 sinu sina)y2 (cosu cosb)u]52

1

r
0

›P

›z
2

r

r
0

g cosa1= � (n=w) ,

FIG. 1. Schematic diagram illustrating the assumed ice geometry and the transformed co-

ordinate system in which the model is formulated. Conventional (dashed) coordinate axes are

zonal, positive eastward (x0); meridional, positive northward (y0); and vertical, positive upward,
zero at sea level (z0). The transformed (solid) system (x, y, z) has its origin at the ice–ocean

interface and axes that point upslope, across slope, and perpendicular to the ice–ocean in-

terface, respectively. The two rotations needed to transform the axes are denoted by angles b

and a. Arrows show velocity vectors for a typical current profile (Fig. 2f).
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where (u, y, and w) are components of the current vector

in the transformed (x, y, and z) system, V is the magni-

tude of Earth’s rotation vector, u is latitude, b is the true

bearing of the y axis (Fig. 1), and r0 is a reference density.

The hydrostatic approximation is applied in the di-

rection perpendicular to the ice shelf base (z), so that the

last equation reduces to

05
›P

›z
1 rg cosa .

The pressure as a function of distance from the interface

is then given by

P(2z)5P(h)1 g cosa

ðh
2z

r dz ,

where h is the instantaneous deviation of the ice–ocean

interface from its equilibrium position (z 5 0), and this

leads to the following expression for the pressure gra-

dient parallel to the ice–ocean interface:

=P(2z)5=P(h)1 g cosa

�
r(h)=h1

ðh
2z

=r dz

�
.

The ice thickness is assumed constant in time, so the

pressure it exerts at the ocean surface P(h) can be de-

fined in terms of a reference state where the planar ice

surface is floating in stationary, ambient fluid of density

ra. This then defines the reference position about which

deviations h generate an additional pressure gradient

force. The pressure gradient imposed by the ice shelf is

›P(h)

›x
52r

a
g sina, and

›P(h)

›y
5 0,

and the full pressure gradient parallel to the ice–ocean

interface can be written as

›P

›x
52r

a
g sina1r

0
g cosa

›h

›x
2r

0
g cosa

ðh
2z

›Dr

›x
dz, and

›P

›y
5 r

0
g cosa

›h

›y
2 r

0
g cosa

ðh
2z

›Dr

›y
dz ,

where

Dr5
r
a
2 r

r
0

has been introduced to remove the stationary reference

state and, consistent with the Boussinesq approximation,

the reference density has been used in place of r(h). Note

that the ambient density is retained in the term that

specifies the pressure gradient associated with the slope

of the ice shelf base. The slope generated by the static ice

thickness gradient can be many orders of magnitude

larger than the transient slopes related to ocean dynam-

ics, so a small error in the density multiplying the static

slope would lead to a large error in the pressure gradient.

The density is a function of temperatureT and salinity S,

for which conservation equations (with constant factors of

reference density and specific heat capacity removed) are

DT

Dt
5= � (K

T
=T), and

DS

Dt
5= � (K

S
=S) ,

whereKT andKS are eddy diffusivities for heat and salt,

respectively. The above equations form a fairly com-

plete model of the ice shelf–ocean boundary layer, from

which a number of reduced models can be derived. For

example, depth integration would yield a plume model

in terrain-following coordinates; then dropping time

dependence, cross-slope gradients, the Coriolis accel-

eration, and the pressure gradient associated with

along-stream variations in plume properties would

yield the basic one-dimensional plume model of

Jenkins (1991). To construct a reduced model suitable

for investigating the structure of the boundary layer

normal to the ice–ocean interface, all gradients in

ocean properties parallel to the interface are assumed

to be zero, and only derivatives with respect to time

and the normal coordinate are retained. With these

assumptions, the continuity equation becomes

›w

›z
5 0,

which implies that the velocity normal to the boundary is

constant and therefore must be equal to the melt rate

everywhere. Since the melt rate is so much (typically six

orders of magnitude) smaller than the other velocities,

the vertical velocity is assumed to be zero, andmelting is

treated as a sink of heat and salt. This has the further

advantage of reducing the problem to one of pure dif-

fusion. The appropriate equations are

›u

›t
2fy5Drg sina2 g cosa

›h

›x
1

›

›z

�
n
›u

›z

�
,

›y

›t
1fu52g cosa

›h

›y
1

›

›z

�
n
›y

›z

�
,

›T

›t
5

›

›z

�
K

T

›T

›z

�
, and

›S

›t
5

›

›z

�
K

S

›S

›z

�
,
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where the Coriolis parameter is given by

f5 2V(cosu sinb sina1 sinu cosa) .

Note that all components of Earth’s rotation vector have

been retained, so the equations remain valid for all slope

angles from horizontal to vertical (0 # sina # 1).

The equations are closed with the addition of a linear

equation of state:

Dr5b
S
(S

a
2 S)2b

T
(T

a
2T) ,

where Ta and Sa are the ambient temperature and sa-

linity, respectively. The two momentum equations can

be conveniently combined by adopting complex nota-

tion for the vectors:

›u

›t
1fiu5Drg sina2 g cosa=h1

›

›z

�
n
›u

›z

�
, (1)

where

u5u1 iy, =h5
›h

›x
1 i

›h

›y
.

Contraction of the scalar equations is also possible

through the introduction of the thermal driving T* as a

new dependent variable:

T*5T2 [l
1
S1 l

2
1l

3
P(h)] ,

where l1, l2, and l3 are coefficients in a linearized ex-

pression for the freezing point of seawater as a function

of salinity and pressure (Jenkins 2011). A linear com-

bination of the two scalar equations then yields a single

equation in the thermal driving

›T*
›t

5
›

›z

�
K
›T*
›z

�
, (2)

where it has been assumed that the diffusivityK5KT5
KS, which is reasonable throughout most of the turbu-

lent boundary layer.

For use with (1) and (2), the equation of state can be

conveniently rewritten in terms of T*:

Dr5 (T*a 2T*)

"
b
S
2b

T
(T

a
2T)/(S

a
2 S)

(T
a
2T)/(S

a
2 S)2 l

1

#
. (3)

Note that up to this point the only stipulation on the

ambient conditions is that they represent a motionless

state, and they could therefore include a horizontally

uniform vertical stratification. However, in most of what

follows the ambient temperature and salinity are taken

to be constant.With this restriction, cooling and dilution

within the boundary layer are related by a constant

factor (Gade 1979) that depends only on the ambient

conditions and the specified core temperature of the ice

shelf relative to the freezing point at the interface T*i:

(T
a
2T)

(S
a
2 S)

5
T*a 1 (L

i
2 c

i
T*i)/c

S
a

, (4)

where c is specific heat capacity, L is latent heat of fu-

sion, and the ‘‘i’’ subscript indicates ice properties. Since

the temperature difference between the ice shelf core

and the ice–ocean interface is at least an order of mag-

nitudemore than variations in the interface temperature

driven by salinity changes there, T*i is assumed to be

constant. With this assumption the relationship between

Dr and T* is linear.

Boundary conditions for (1) and (2) are

u5 0, T*5 0 at z5 0;

u5
ig=h

f
, T*5T*a at z5‘ ;

and the far-field properties also provide the initial con-

ditions over the entire water column. The velocity

boundary conditions complete the specification of a

standard model of the Ekman layer created either by

a far-field geostrophic flow (Garrett et al. 1993) or by

a density current (Wang et al. 2003) over a sloping solid

boundary, while the thermal driving boundary condi-

tions encapsulate the distinctive nature of this problem.

The zero-flux Neumann boundary condition that would

conventionally be applied at the seabed is replaced

with a Dirichlet boundary condition that enforces the

freezing point condition. Thus, when the far-field ther-

mal driving is nonzero, turbulent diffusion of heat

through the boundary layer causes it to stratify. The

situation is thus fundamentally different from those

studied by Garrett et al. (1993), in that they considered

boundary mixing as a process of destroying the stratifi-

cation imposed by the far-field conditions, and Wang

et al. (2003), in that they defined the density deficit over

the slope as a constant forcing parameter.

The only remaining problem is to specify n and K,

which in general would be specified as functions of depth

via a turbulence closure scheme of arbitrary complexity.

As mentioned above, the present study uses the simplest

possible closure, that of equal, constant values. This is

attractive in that it is straightforward to implement and

easy to understand yet allows some key features of the

boundary layer structure to emerge.

A problem that is immediately apparent from the above

model setup is that there is no steady-state solution. The

system will continue to evolve until the heat flux is
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everywhere equal. There are two ways around this prob-

lem, both of which require a relaxation of the zero gradient

assumption parallel to the ice–ocean interface. The first is

to impose an ‘‘entrainment’’ velocity perpendicular to the

interface that drives divergence in the boundary current.

The velocity perpendicular to the interface is then given by

w5
z

z
bc

w
e

for 0$2z$2z
bc
, and

w5w
e

for 2z#2z
bc
, (5)

where the thickness of the boundary current zbc is de-

fined by the level at which the deviation from the im-

posed far-field flow rises above a threshold value.

Vertical advection can then support a divergence in the

heat flux perpendicular to the interface. The small di-

vergence in the flow parallel to the interface is ignored

in the momentum balance to avoid the need for a more

complex model. The alternative way to generate a steady

state is to impose a thermal driving gradient parallel to

the interface, so that advection by the boundary flow can

support a divergence in the heat flux toward the interface.

The choices of either entrainment velocity or boundary-

parallel temperature gradient are arbitrary, as are the

steady states they produce, but the alternative is to

choose an arbitrary instant from a continuously evolving

solution. None of these choices are entirely satisfactory,

and this is one of the limitations alluded to earlier.

4. Results

a. Current structures generated by pressure gradient
and buoyancy forcing

Figure 2 shows profiles of thermal driving andboundary-

parallel velocity components for two simple configurations

of the model: one driven by a depth-independent pres-

sure gradient set up by deviations in the height of an

otherwise horizontal ice–ocean interface, the other

FIG. 2. (a),(d) Thermal driving and upslope (solid) and across-slope (dashed) velocity components as a function

of distance from the ice–ocean interface for a flow forced by (b),(e) a background pressure gradient and (c),(f) an

inclined ice surface. Different colors indicate the solution (top) after 0.1 (red), 0.2 (green), 0.5 (cyan), and 1

(magenta) inertial period and (bottom) after 1 (red), 2 (green), 5 (cyan), and 10 (magenta) inertial periods. Thick

black lines show the analytical solution for the steady Ekman layer formed by a uniform background flow. The

depth and velocity scales dE and yig are the Ekman depth, given by (6), and the geostrophic velocity at the interface,

given by (g/f)›h/›x for the pressure gradient forcing in (b) and (e) and (7) for the sloping ice shelf base in (c) and (f).

Note the differing vertical and horizontal scales.
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driven by a depth-dependent pressure gradient set up by

the density deficit generated at a sloping ice–ocean in-

terface. In both cases the zero thermal driving condition

at the ice–ocean interface creates a step that diffuses

into the ambient water column. Since the eddy diffu-

sivity is constant, the solution is unaffected by the dif-

fering current structure and evolves independently,

producing a broadening thermal boundary layer with

gradually weakening stratification (Figs. 2a,d).

For a horizontal ice–ocean interface with subice flow

forced by a surface pressure gradient, the dynamic solu-

tion is unaffected by the stratification and conforms to

that of the classic Ekman layer (Figs. 2b,e). The far-field

geostrophic flow is reduced to zero over the depth of the

Ekman layer, within which there is a frictionally gener-

ated current that flows to the right (in the Southern

Hemisphere) of the geostrophic current. Over the first

inertial period both thermal and velocity boundary layers

are of the same depth (Fig. 2a), but subsequently the

thermal boundary layer continues to grow (Fig. 2d), while

the velocity profile reaches a steady state, with deviations

from geostrophy confined to the Ekman layer (Fig. 2e).

The continued growth of the thermal boundary layer

becomes important when a slope is introduced to the

ice–ocean interface, providing a link between the

thermal and current structures. The buoyancy forcing

produces currents wherever there is a thermal driving

deficit (Figs. 2c,f). As before, currents beyond the

Ekman layer are purely geostrophic, flowing at right angles

to the forcing created by the ice shelf basal slope, but in this

case they decay to zero in line with the buoyancy forcing.

For times longer than the inertial period the frictionally

generated deviations from the evolving geostrophic flow

are steady and follow the classic Ekman layer solution

(Fig. 3).

To obtain that solution, (1) and (2) can be recast in

terms of a time-dependent, cross-slope, geostrophic

current (0, yg,) and a steady deviation from that

current (u0, y0):

2f(y
g
1 y0)5Drg sina1K

›2u0

›z2
,

›y
g

›t
1fu0 5K

›2

›z2
(y

g
1 y0), and

›Dr

›t
5K

›2Dr

›z2
.

The geostrophic current is given by

FIG. 3. (a),(d) Current profiles from Figs. 2e and 2f at (a),(d) 1, 2, 5, and 10 inertial periods and their de-

composition into (b),(e) geostrophic and (c),(f) ageostrophic components. Thick black lines in (c) and (f) show the

analytical solution for the steady Ekman layer.
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2fy
g
5Drg sina ,

so the scalar equation implies an analogous evolution

equation for the geostrophic velocity

›y
g

›t
5K

›2y
g

›z2
.

Making use of this in the momentum equations, the

expression for the deviations from geostrophy become

the conventional ones for the Ekman layer,

2fy0 5K
›2u0

›z2
, and

fu0 5K
›2y0

›z2
,

for which the solution is well known (Cushman-Roisin

and Beckers 2011):

u0 5 yig exp

�
2z

d
E

�
sin

�
z

d
E

�
, and

y0 5 yig exp

�
2z

d
E

�
cos

�
z

d
E

�
,

where dE is the Ekman depth

d
E
5

ffiffiffiffiffiffiffi
2K

jfj

s
, (6)

and yig is the geostrophic velocity that would be at-

tained at the ice–ocean interface in the absence of

friction. The above analytical solutions for the steady

Ekman currents are shown in Fig. 3f. They are identical

to the classical Ekman currents (Fig. 3c) but are scaled

by the hypothetical maximum geostrophic current, as-

sociated with the maximum in buoyancy forcing at the

ice–ocean interface, rather than the far-field geo-

strophic flow, which in this case is zero. The maximum

geostrophic current can be conveniently written in

terms of the far-field thermal driving and ice shelf basal

slope:

yig 5
g

f
sina

Dr

DT*
(T*a 2Ti

*), (7)

where Ti

* is the thermal driving at the ice–ocean in-

terface [Ti

* 5 0 is imposed by the Dirichlet boundary

condition for an ice–ocean interface, but the term is

retained in (7) for generality], and the factor that re-

lates the density deficit to thermal driving can be de-

rived from (3) and (4) as

Dr

DT*
5
S
a
b
S
2b

T
[T*a 1 (L

i
2 c

i
T*i)/c]

T*a 1 (L
i
2 c

i
T*i)/c2 S

a
l
1

. (8)

For typical ice and ocean conditions, (8) has an ap-

proximately constant value of around 2.5 3 1024. For

quasi-horizontal flows, where jfj is around 1.4 3 1024,

the maximum geostrophic velocity is therefore given

approximately by

yig ’ 17:5 sinaT*a .

The decomposition of the boundary-parallel currents

(Fig. 3) effectively recasts the upslope flow as the

Ekman transport associatedwith a cross-slope, buoyancy-

driven, geostrophic current and motivates the introduc-

tion of some useful terminology that will be adopted

throughout this paper to clarify the ensuing discussion.

The layer of the ocean that has been influenced by the

ice shelf and is hence partially or wholly forced by the

associated buoyancy will be referred to as a buoyant

‘‘boundary current.’’ Within that current, the part that is

influenced by boundary friction will be referred to as the

‘‘boundary layer.’’ Thus, the boundary layer has an up-

slope, frictionally driven velocity component, while the

boundary current beyond the boundary layer is purely

geostrophic.

For small slopes, when the conventional approxi-

mation for the Coriolis parameter (f ’ 2V sinu cosa)

is valid, the geostrophic velocity in (7) is the same as

that derived by Nof (1983) for the speed of a density

anomaly across a frictionless slope. Furthermore, the

current structures in Figs. 2 and 3 are analogous to

those found for the downslope flow of dense water

(Shapiro and Hill 1997; Wang et al. 2003; Cenedese

et al. 2004). However, there are some important dif-

ferences, illustrated in Fig. 4, which shows the results

obtained when (1) and (2) are applied to the gravity

current problem by switching the Dirichlet boundary

condition on (2) to a zero-flux Neumann condition

after the first inertial period. Mixing now homogenizes

the boundary current, reducing the density deficit at

the interface (Fig. 4a). For the case of a background

pressure gradient and no interfacial slope the change

in stratification has no impact (Fig. 4b), but for a

sloping interface the decrease in the buoyancy forcing

reduces the magnitude of the currents (Fig. 4c). Note

that as in Fig. 3, (7), with Ti

* now freely evolving, ac-

curately scales the frictional response (Figs. 4d,f) ir-

respective of the density profile through the boundary

layer. For the ice shelf–ocean boundary current,

where the thermal driving at the interface is fixed at

zero, the frictional response of the boundary layer is

thus fixed in time, despite the continuous evolution of
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the stratification and flow across the entire boundary

current. Herein lies the principal difference between

the flow along a reactive boundary discussed in this

paper and the flow of dense current down a passive

seabed slope.

b. Combinations of pressure gradient and buoyancy
forcing

When there is a background pressure gradient forcing

the flow on a sloping ice shelf base, the solutions for both

the geostrophic (Figs. 3b,e) and ageostrophic (Figs. 3c,f)

parts of the flow generated by each component of the

forcing are additive. A pressure gradient applied along-

slope generates geostrophic across-slope and frictional

along-slope currents that work with or against the

buoyancy-forced analogs. Thus, a geostrophic current

flowing with deepening ice to its left (in the Southern

Hemisphere) enhances both across-slope flow and the

upslopeEkman transport in the boundary layer (Figs. 5a–c),

while a current in the opposite direction opposes both

(Figs. 5d–f). In the case that the pressure gradient–

forced geostrophic flow is exactly equal and opposite to

yig, the boundary layer is arrested (Fig. 5e); there is no

ageostrophic flow at all, and the geostrophic flow is

brought to zero at the interface by the opposing buoyancy

and pressure gradient forcing. For a pressure gradient–

forced geostrophic current that exceeds 2yig, the forcing

on the boundary layer exceeds that associated with the

opposing buoyancy-forced current and the transport in

the boundary layer is downslope (Fig. 5f). With high

slopes and thermal driving, the buoyancy forcing from ice

shelf melting dominates over any reasonable background

flows, so current profiles will look like those in Figs. 5a

and 5d, but at low slopes and thermal driving conditions

common beneath Antarctic ice shelves, arrest and re-

versal of the upslope flow can occur and all of Figs. 5a–f

are possible.

FIG. 4. (a) Thermal driving and upslope (solid) and across-slope (dashed) velocity components as a function of

distance from the ice–ocean interface for a conventional density current forced by (b) a background pressure

gradient and (c) an inclined surface. Different colors indicate the solution after 1, 2, 5, and 10 inertial periods, and

bold black lines show the Ekman solution (as in Fig. 2). Forcing is identical to that used in Fig. 2, but with the upper

Dirichelet boundary condition on thermal driving replaced by a zero-flux Neumann condition after one inertial

period. Lower panels show the velocity profiles in (c) replotted (d) with time-varying scaling calculated using the

instantaneous value of the interfacial thermal driving, Ti

*, in (a) and the decomposition into (e) geostrophic and

(f) ageostrophic components. Note the differing horizontal scale in (c).
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Beneath an ice shelf, the water column thickness gra-

dients that determine the background potential vorticity

(f/H) gradients result from the combination of seabed

and ice base topography. Thus, unlike in the open ocean, it

is possible to have geostrophic currents that flow up

or down the ice shelf base in response to cross-slope

pressure gradients. For a geostrophic flow in the down-

slope direction, the associated Ekman transport is in the

same sense as the cross-slope buoyancy-forced flow, so

that the cross-slope flow is enhanced within the boundary

layer (Figs. 6a–c). If the downslope geostrophic current is

weaker than the upslope Ekman current, there is a re-

versal in the along-slope flow within the boundary layer

with upslope flow along the ice shelf base giving way to

downslope flow further from the interface (Fig. 6a).

Otherwise there is downslope flow at all depths (Figs. 6b,c).

For an upslope geostrophic flow, the associated Ekman

transport opposes the cross-slope, buoyancy-forced

current (Figs. 6d–f) and if strong enough can drive a re-

versal in the cross-slope flow within the boundary layer

(Fig. 6f). Once again, strong buoyancy forcing, caused by

steep slopes and/or high thermal driving, favors the current

profiles depicted in Figs. 6a and 6d, but the other forms are

possible where slopes are low and thermal driving small.

Despite the simplicity of themodel presented thus far,

the solutions that emerge contain a rich variety of current

structures. Nevertheless, the principle remains that the

structure is made up from the addition of the background

geostrophic flow with its associated boundary layer and

the buoyancy-driven, geostrophic boundary current with

its associated boundary layer. In both cases the friction-

ally controlled currents in the boundary layer follow the

classic Ekman layer solution scaled with the free geo-

strophic current at the ice–ocean interface (equal to the

far-field geostrophic current in the case of the depth-

independent, pressure gradient–forced flow). TheEkman

response that distinguishes the boundary layer from the

remainder of the boundary current is steady in time, after

the initial inertial oscillation, given steady forcing. How-

ever, the entire boundary current continues to evolve and

would do so until the thermal driving profile were linear

between the bottom boundary condition and the interface.

This evolution leads to a broadening of the boundary

current and a weakening of the stratification across it.

FIG. 5. Upslope (solid) and across-slope (dashed) velocity profiles generated by a combination of an inclined ice

surface and an along-slope background pressure gradient. The magnitude of the along-slope pressure gradient is

chosen to give a cross-slope geostrophic flow equal to (a) yig/2, (b) y
i
g, (c) 2y

i
g, (d) 2yig/2/2, (e) 2yig, and (f) 22yig,

where yig is given by (7). Different colors indicate the solution after 1, 2, 5, and 10 inertial periods.

1794 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46



While the discussion thus far has focused on steady

forcing, for many ice shelves the strongest pressure

gradient forcing arises from perturbations in surface

elevation associated with the tides. Figure 7 shows the

impact of a sinusoidally varying pressure gradient ap-

plied along- and across-slope separately at frequencies

equal to 2, 1, and 0.5 times the inertial frequency. For a

typical polar location the first would correspond to a

higher harmonic, the second a semidiurnal, and the

third a diurnal tide. The amplitude of the forcing is cho-

sen to give tidal currents having a similar order of mag-

nitude to the buoyancy-driven flow. The response is

complex, but in general the semidiurnal tide gives rise to a

forced inertial oscillation, which is the same, apart from

the phase, irrespective of the direction of the forcing

(Figs. 7b,e), while for the diurnal tide the response is

strongest in the velocity component perpendicular to

the forcing, particularly within the boundary layer

(Figs. 7c,f), and for the higher harmonic it is strongest

parallel to the forcing (Figs. 7a,b). Arguably the most

striking feature of Fig. 7 is that although the free-

stream tidal currents are of comparable magnitude,

there are marked differences in the current shear

generated in the upper part of the water column. For

the semidiurnal tide there are relatively large changes

in shear across the boundary current but comparatively

small changes across the boundary layer itself, partic-

ularly near the interface (Figs. 8b,e). The opposite is

true for the higher- and lower-frequency forcing; the

current structure of the boundary current is relatively

unaffected, particularly for the higher harmonic (Figs. 8a,d),

but there are marked changes in the current structure

across the boundary layer that yield particularly large

changes in shear stress at the ice–ocean interface when

the along-slope pressure gradient varies at diurnal

frequencies (Fig. 8c).

c. Steady-state solutions including advection

The solutions discussed above are all transient as a

result of the continuous diffusive expansion of the

boundary current. There are two processes that can

bring a halt to that expansion: advection of heat parallel

to the interface driven by along-flow gradients in ther-

mal driving within the boundary current, and advection

of heat perpendicular to the interface driven by along-

flow gradients in the velocity of the boundary current.

FIG. 6. Upslope (solid) and across-slope (dashed) velocity profiles generated by a combination of an inclined ice

surface and an across-slope background pressure gradient. The magnitude of the across-slope pressure gradient is

chosen to give an upslope geostrophic flow equal to (a)2yig/3, (b)2yig, (c)23yig, (d) y
i
g/3, (e) y

i
g, and (f) 3y

i
g, where y

i
g

is given by (7). Different colors indicate the solution after 1, 2, 5, and 10 inertial periods.
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Figures 9a and 9d show an example solution with the

addition of a velocity normal to the ice–ocean in-

terface, as in (5). The boundary current reaches a

steady thickness when advection of heat toward the

boundary is sufficient to balance the diffusive loss of

heat to the ice. A similar steady solution is obtained

through the addition of a cross-slope gradient in

thermal driving (Figs. 9b,e). The imposed gradient is

such that advection by the geostrophic flow causes

warming of the water column, and a steady state is

reached when the boundary current carries enough heat

to balance vertical diffusion toward the ice. In either

case the basic structure differs little from the transient

solutions discussed earlier, and the point at which the

evolution has been halted is arbitrary.

An alternative to the latter solution is to add an along-

slope gradient in thermal driving.However, to produce a

steady solution then requires that sufficient heat be

advected within the boundary layer itself to balance the

heat loss to the ice. The solution (Figs. 9c,f) looks quite

distinct, with strong stratification across a thin boundary

layer that has a dominant upslope velocity component.

The weak, cross-slope flow is frictionally driven, with the

maximum occurring on the far side of the upslope ve-

locity maximum. This solution is closest to the Prandtl

model for the katabatic wind (Oerlemans 2010), which is

derived from a balance between vertical diffusion and

downslope advection. While the current structure is

similar to those derived by Wang et al. (2003) and

Cenedese et al. (2004) for dense slope flows that are thin

relative to the Ekman depth, in those studies the thick-

ness and uniform properties of the bottom layer were

prescribed. The solution shown in Figs. 9c and 9f is

distinct in that the thickness of, and strong stratification

across, the upslope flow are derived parameters.

It is instructive to look more closely at the solution for

this regime, which can be described by a set of equations

that are analogous to those from which the earlier

FIG. 7. Upslope (solid) and across-slope (dashed) velocity profiles generated by a combination of an inclined

ice surface and a sinusoidally varying background pressure gradient applied (top) along slope, for which steady

forcing yields the solutions in Fig. 5, and (bottom) across slope, for which steady forcing yields the solutions in

Fig. 6. The frequency of the forcing is equal to (a),(d) twice the inertial frequency, (b),(e) the inertial frequency,

and (c),(f) half the inertial frequency. Different colors indicate different states of the tide ranging from red at

times of maximum pressure gradient forcing in the positive direction to green at times of zero forcing to blue at

times of maximum forcing in the negative direction. Results are taken from the first tidal cycle following a spinup

of 10 inertial periods. Thick black lines show the solution after 10 inertial periods with no pressure gradient

forcing (as in Fig. 2f).
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Ekman solution was derived. The upslope current is

again steady, so (1) and (2) become

2fy5Drg sina1K
›2u

›z2
,

›y

›t
1fu5K

›2y

›z2
, and

u
›Dr

›x
5K

›2Dr

›z2
,

where the density deficit of the current is also steady be-

cause there is a balance between diffusion and along-slope

advection. This latter balance is achieved on short time

scales compared with the inertial period, so the velocity

profiles are of the same formas those depicted inFig. 2c for

the earliest stages of evolution, and the boundary layer is

thinner than the Ekman layer. Thus, the Coriolis term is

small in the upslope momentum budget, which reduces

to a balance between buoyancy and friction. The density

deficit and upslope momentum equations then form a

coupled set that takes the same form as the earlier Ekman

equations but with the across-slope velocity replaced by

the density deficit:

2(g sina)Dr5K
›2u

›z2
, and�

›Dr

›x

�
u5K

›2Dr

›z2
.

The cross-slope momentum balance is now an uncou-

pled diffusion equation, as was previously the case for

the density deficit and associated cross-slope geostrophic

flow. The solution for the upslope current and density

deficit takes the same form as the Ekman solution
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�
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but with velocity and length scales now given by

u
P
5

�
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›Dr/›x

�1/2 Dr

DT*
T*a, and

d
P
5

�
4K2

g sina›Dr/›x

�1/4
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FIG. 8. Shear stress profiles for the corresponding tidally varying velocity profiles shown in Fig. 7. Different colors

indicate different states of the tide. In addition to the red, green, and blue profiles corresponding to the velocity

profiles in Fig. 7, three intermediate profiles are included through each quarter cycle of the forcing. Thick black

lines show the shear stress associated with the bold black velocity profiles in Fig. 7, obtained after 10 inertial periods

with no pressure gradient forcing.
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This analytical solution to the Prandtl model is plotted in

Figs. 9c and 9f. The along-slope temperature gradient

required to enter this regime can be estimated by com-

paring the length scales governing the Ekman and

Prandtl solutions that must satisfy

d
P
# d

E
.

The inequality is satisfied when

›T*
›x

$
DT*
Dr

f2

g sina
. (9)

Figure 10 shows solutions for the region of parameter

space either side of the equality. Analytical solutions

for the steady Prandtl flow and temperature structure

and for the steady upslope Ekman flow are shown.

While the latter is the same in each case, the Prandtl

length scale contracts as the temperature gradient in-

creases and takes over as the limiting scale for the

boundary layer. For low slopes typical of the underside

of ice shelves, (9) yields unreasonably large tempera-

ture gradients of 1022 to 1023 8Cm21, suggesting that

the solutions in Figs. 9c and 9f and 10c and 10f repre-

sent unlikely extremes. However, for quasi-vertical ice

faces, the implied temperature gradient of 1025 8Cm21

is readily attainable, suggesting that upslope advection

is a candidate process for limiting the growth of the

boundary current and confining it to the boundary layer

in that case.

The inequality in (9) can also be written as

�
g
›Dr

›z0

�
sin2a

f2
$ 1, (10)

which has the expected form of a Burger number for the

boundary flow. For a nonuniform ambient water column

there are two components to the gradient in the density

deficit: one associated with density gradients within the

boundary flow, and the other associated with density

gradients within the ambient environment. If the latter

FIG. 9. (top) Thermal driving and (bottom) upslope (solid) and across-slope (dashed) velocity profiles for the case

shown in Figs. 2a, 2d, 2c, and 2f when the diffusive growth of the boundary current is halted by (a),(d) vertical,

(b),(e) across-slope, and (c),(f) along-slope heat advection. Different colors indicate the solution after 1, 2, 5, and 10

inertial periods. Thick black thermal driving and upslope velocity profiles in (c) and (f) show the steady Prandtl

solution, discussed in the text. Note the differing horizontal scale in (f).
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dominate, the term in parentheses on the left-hand side

of (10) is the square of the buoyancy frequency associ-

ated with the ambient stratification. The buoyancy fre-

quency is typicallymuch greater than the inertial frequency,

so with the restriction to uniform ambient fluid relaxed, the

conclusion stands that while the Ekman solution is most

appropriate for low slopes, for steep or vertical ice walls the

Prandtl solution is more appropriate.

Figures 9 and 10 serve to emphasize some important

points. Adding an advective term that can balance dif-

fusive loss of heat to the ice shelf base is the only way to

simulate a steady-state boundary current with the model

presented here, without the lower boundary condition

coming into play. Furthermore, advection acts to

maintain stratification within the boundary current that

would otherwise gradually diffuse away. By bringing

additional heat to the boundary current, advection in-

fluences the melt rate at the ice–ocean interface. The

melt rate is no longer simply a product of vertical dif-

fusion, and no part of the boundary layer can be

considered a constant flux layer (Figs. 11b,c). For the

Prandtl solution in particular, the heat flux normal to the

ice shelf base falls to a fraction of its value at the interface

over a distance of a few meters (Fig. 11c). Similarly,

the shear stress is a complex function of distance from the

ice–ocean interface, with a minimum at the core of the

upslope current (Figs. 11e,f). The absence of a constant

flux layer and the minimum in the shear stress at the

velocity maximum are often cited complications in the

analysis of katabatic winds (Oerlemans 2010) that mani-

fest themselves also in the problem of the ice shelf–ocean

boundary current, particularly on a steep ice face.

5. Discussion

While the restriction to one-dimension represents a

severe limitation of the model presented above, the re-

sults do yield some insight into aspects of ice shelf–ocean

boundary flows that have received little attention pre-

viously. As with conventional buoyancy-driven slope

FIG. 10. (top) Thermal driving and (bottom) upslope (solid) and across-slope (dashed) velocity profiles for the case

shown in Figs. 9c and 9f but with the along-slope density gradient chosen such that the ratio of Prandtl to Ekman

length scales (dP/dE) is (a),(d)
ffiffiffi
2

p
, (b),(e) 1, and (c),(f) 1/

ffiffiffi
2

p
. Different colors indicate the solution after 1, 2, 5, and 10

inertial periods. Thick black thermal driving and upslope velocity profiles show the steady, analytical Prandtl (solid)

and Ekman (dashed) solutions, which overlie each other in (e) where the governing length scales are equal.
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currents, the flow can be decomposed into a geostrophic,

across-slope boundary current and an embedded fric-

tional boundary layer that carries the along-slope trans-

port. The distinctive feature of the ice shelf–ocean

boundary current is the stratification, which means that

the geostrophic across-slope flow is itself a continuous

function of depth across the boundary current. Despite

this, the frictional deviations from geostrophy can be

quantified through the application of classical Ekman

theory, with scaling provided by the geostrophic velocity

associated with the fixed density deficit at the ice–ocean

interface. That result potentially allows the application of

some fundamental results from ocean circulation theory

to the sub–ice shelf environment. For example, from the

Ekman solution follows a simple expression for the up-

slope transport within the boundary layer (Cushman-

Roisin and Beckers 2011),

V
E
5

yigdE

2
,

that can be quantified in terms of the ambient ocean

properties and the ice shelf basal slope:

V
E
5 g

Dr

DT*

 
K

2jf j3
!1/2

sinaT*a .

For a laterally infinite ice shelf with no gradients in the y

direction, this would be the only source of flow out of the

cavity. The lowering of the surface elevation within the

cavity caused by the outflow would generate a pressure

gradient opposing the buoyancy-driven flow (as in

Fig. 5d). Reduction of the upslope transport combined

with a bottom Ekman transport into the cavity could

then lead to a steady overturning circulation with op-

posing transports in the seabed and ice shelf boundary

layers of magnitude VE/2.

The slope of the ice shelf base introduces a back-

ground gradient in T*a associated with the fall in the

freezing point temperature with increasing pressure.

The result is a convergence in the upslope Ekman trans-

port and pumping of water into the geostrophic flow.

Similarly, changes in basal slope produce convergence or

divergence in the Ekman flow, such that the curvature of

the ice shelf base plays a role in driving Ekman pumping

and suction analogous to that of the wind stress curl in

FIG. 11. Profiles of (top) vertical heat flux and (bottom) shear stress for the (a),(d) pressure gradient–forced

solution shown in Figs. 2b and 2e and the sloping ice–ocean interface solutions in Figs. 9b, 9c, 9e, and 9f with (b),

(e) cross-slope heat advection and (c),(f) upslope heat advection. Different colors indicate the solution after 1, 2, 5,

and 10 inertial periods. Note the differing horizontal and vertical scales in (c) and (f).
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classical ocean circulation theory. The associated vertical

velocity in the interior flow can be expressed as

w
E
52g

Dr

DT*

 
K

2jf j3
!1/2

›

›x
(sinaT*a) .

If the background change in the freezing point temperature

is the only contribution to changes in the ambient thermal

driving and the ice shelf draft z0b is expressed in terms of the

original, unrotated coordinates, the vertical velocity

becomes
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) .

Typically ice shelves have steeper basal slopes where the

ice is thicker, so the curvature is such that the gradient

reduces in the upslope direction, driving Ekman pumping.

For a steady circulation to develop requires a compensating

pressure gradient–driven flow that acts to weaken the

pumping from the ice–ocean boundary layer and generate a

balancing Ekman suction into the seabed boundary layer.

Inverted channels carved into the base of ice shelves

have received attention recently (Rignot and Steffen

2008; Dutrieux et al. 2013), but basic questions remain

about how they influence the dynamics of the ice shelf–

ocean boundary current. For topographic features that

are wide compared with the internal Rossby radius of

deformation, Wåhlin (2002) presented a theoretical treat-

ment of geostrophic flowof densewater down channels cut

into a continental slope. Wåhlin’s (2002) steady along-

channel flow is constructed by imposing cross-channel

variations in boundary current thickness and hence pres-

sure gradients that cancel the Ekman convergence driven

by the curvature of the isobaths. For any channel geometry

there is a maximum along-channel transport determined

by the maximum gradient in boundary current thickness

that can be containedwithin the channel. Similar principles

should apply to flow within broad sub–ice shelf channels,

with the added complication that the phase changes driven

by the flow can modify the channel geometry.

A key simplification in the model is the assumption of

constant viscosity/diffusivity. This is especially unrealistic

close to the ice–ocean interface, so a quantitative discus-

sion of the computed ice–ocean heat fluxes and associated

melt rates is rathermeaningless. Themelt rates are directly

proportional to the thermal driving gradient at the in-

terface and so decay over time, unless a steady state is

imposed by an arbitrary advection term. Nevertheless the

computed current profiles give insight into the processes

that drive turbulent mixing within the boundary flow.

Current shear is stronger across the boundary layer than

beyond it, while the stratification is relatively constant

throughout the boundary current. That suggests that most

turbulence closuremodels would produce higher viscosity/

diffusivity within the boundary layer than deeper in the

boundary current. A one-dimensional diffusion model

would then yield a relatively well-mixed boundary layer

and stronger stratification across the remainder of the

boundary current, a structure that may not be dissimilar to

the commonly assumed situation of a well-mixed layer

underlain by a sharp pycnocline.

The foregoing comments notwithstanding, observa-

tions of the water column beneath ice shelves typically

do not conform to the conventional view of a mixed

layer, so the question remains as to what maintains

stratification across the boundary layer. The answer to

this, at least in the simplified framework of constant

viscosity/diffusivity, is heat advection, either along or

toward the ice shelf base. The earlier discussion of

Ekman layer divergence suggested that the most

common configuration of an ice shelf would drive ad-

vection away from the ice–ocean boundary, reducing

the near-ice stratification. That leaves advection by the

boundary current itself as the most likely candidate for

maintaining the stratification. Plumemodels have already

demonstrated the fundamental role of advection in con-

trolling the along-flow temperature evolution and hence

the large-scale patterns of melting and freezing. The

model discussed in this paper suggests that it also plays a

role in the transfer of heat across the ice–ocean boundary

layer, complicating the problem of inferring heat fluxes

from observations when the sampling is limited to indi-

vidual vertical profiles.

6. Conclusions

As stated at the outset, the model discussed above is

far from being a complete theory for the ice shelf–ocean

boundary layer and current. In particular, it is not in-

tended as a replacement for plume models but rather a

complimentary analysis of the underlying equations.

Current structure over the dimension that is depth aver-

aged in plumemodels has previously been investigated in

the context of well-mixed flows (Shapiro and Hill 1997;

Wang et al. 2003; Cenedese et al. 2004), but the model

presented here incorporates the effects of a stabilizing

interfacial buoyancy flux. The simplification of constant

viscosity/diffusivity means that little quantitative can be

said about scalar profiles beneath an ice shelf but that

simplification does allow an exploration of the most

fundamental controls on the current structure. In this way

themodel starts to fill an important gap in our knowledge

left by the complete absence of any observations of near–

ice shelf current profiles.

JUNE 2016 J ENK IN S 1801



A key result is the separation of the boundary current

into an exterior geostrophic flow and an interior fric-

tional boundary layer, features that are averaged to-

gether by depth integration in the plume equations. The

upslope flow in the frictional boundary layer can be

quantified through classical Ekman theory once the

boundary current thickness exceeds the boundary layer

thickness. Analogous results are obtained for conven-

tional density currents on seabed slopes, but in the case

of the ice shelf–ocean boundary current the Ekman

transport remains steady, irrespective of subsequent

evolution in the thickness of, and stratification across,

the boundary current. The reason is that the Ekman

response scales with the density deficit at the interface

and that is fixed by the freezing point conditions that

must prevail there. That simple result provides a potential

link between low-order analyses of the ocean general cir-

culation and the circulation within a sub–ice shelf cavity,

with the interfacial conditions replacing wind stress curl as

the driver of exchange between the boundary layer and the

geostrophic flow beyond. A quantitative theory for the

circulation in an idealized cavity, forced only by melting at

the ice–ocean interface, would provide an invaluable test

bed for numerical models.

The initial motivation for this study was an inves-

tigation of shear within the ice shelf–ocean boundary

current that acts as the source of turbulent kinetic

energy for mixing. The present model is only a start-

ing point for this; a fuller investigation would require the

addition of a turbulence closure scheme that relates

viscosity/diffusivity to shear production and buoyancy

suppression of turbulence. However, some general

pointers emerge. A relatively well-mixed layer is likely to

emerge from the one-dimensional diffusion problem,

since the application of any turbulence closuremodel will

yield higher viscosity/diffusivity within the frictional

boundary layer than within the boundary current, where

shear is generated only by the stratification. Along-slope

advection is the strongest candidate for maintaining

stratification within the boundary layer itself, so gradi-

ents in temperature and salinity across the boundary

layer are likely to be stronger against steep or vertical

ice faces.

The distinction in the mixing processes between the

boundary layer and boundary current may help to ex-

plain one of the key failings of plume models. Most, if

not all, theories result in one-way entrainment, so that

once water is incorporated into the plume it continues to

interact with the ice, even when the plume slows and

thickens as it encounters the more gently sloping ice

shelf base further from the grounding line. Mixing into

the plume is determined by the shear instability at its

outside edge; either the shear is sufficient to overcome

the gravitational stability and drive entrainment or the

interface is stable. Since diffusivity is implicitly assumed

to be high within the plume, there is no mechanism to

restratify the flow and detrain part of the plume. How-

ever, if vigorous mixing can only be sustained within the

frictional boundary layer, convergence of the flow

within that layer will lead to pumping of water into the

geostrophic interior where it will cease to interact di-

rectly with the ice. It might be possible to capture these

processes using a combination of both one-dimensional

approaches to the ice shelf ocean interaction problem,

using the plume concept to simulate the geostrophic

boundary current but embedding within it a simple

model or parameterization of the boundary layer.
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