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Summary

1. In 2003, 24 presence–absence b-diversity metrics were reviewed and a number of trade-offs

and redundancies identified. We present a parallel investigation into the performance of abun-

dance-based metrics of b-diversity.
2. b-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics

available to quantify it: the choice of metric is an important decision.

3. We test 16 conceptual properties and two sampling properties of a b-diversity metric: met-

rics should be 1) independent of a-diversity and 2) cumulative along a gradient of species

turnover. Similarity should be 3) probabilistic when assemblages are independently and identi-

cally distributed. Metrics should have 4) a minimum of zero and increase monotonically with

the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences.

However, complete species turnover should always generate greater values of b than extreme

8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) sym-

metry (bA,B = bB,A), 12) double-zero asymmetry for double absences and double presences

and 13) not decrease in a series of nested assemblages. Additionally, metrics should be inde-

pendent of 14) species replication 15) the units of abundance and 16) differences in total

abundance between sampling units. When samples are used to infer b-diversity, metrics

should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test

29 metrics for these properties and five ‘personality’ properties.

4. Thirteen metrics were outperformed or equalled across all conceptual and sampling prop-

erties. Differences in sensitivity to species’ abundance lead to a performance trade-off between

sample size bias and the ability to detect turnover among rare species. In general, abundance-

based metrics are substantially less biased in the face of undersampling, although the pres-

ence–absence metric, bsim, performed well overall. Only bBaselga R turn, bBaselga B-C turn and bsim
measured purely species turnover and were independent of nestedness. Among the other met-

rics, sensitivity to nestedness varied >4-fold.

5. Our results indicate large amounts of redundancy among existing b-diversity metrics,

whilst the estimation of unseen shared and unshared species is lacking and should be

addressed in the design of new abundance-based metrics.

Key-words: b-diversity indices, community composition, differentiation, metrics, rank abun-

dance distribution, similarity, simulated assemblage, spatial turnover

Introduction

Metrics of b-diversity are widely used in ecological studies,

but there is uncertainty about the degree of redundancy

among the metrics available and the facets of b-diversity
being measured. Whittaker (1960, 1972) broadly defined

b-diversity as the spatial variation (turnover) in species

composition and abundance between sampling units,

whilst a-diversity is the local diversity within a single

sampling unit and c-diversity measures larger-scale

diversity.

The number of studies investigating b-diversity has

increased considerably in recent years (Koleff, Gaston &

Lennon 2003a; Anderson et al. 2011). b-diversity has been

linked to the shape of the species–area curve (Harte et al.

1999), variance in species occupancy (McGlinn & Hurl-

bert 2012) and species’ spatial aggregation (Morlon et al.*Correspondence author. E-mail: loubar@nerc.ac.uk
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2008). The distance–decay relationship (the increase in

b-diversity with geographical distance) is a critical compo-

nent of three of the six unified theories of biodiversity

reviewed by McGill (2010). Measures of b-diversity in

relation to environmental and spatial gradients have been

used to unpick community assembly (Chase 2003) and

drivers of global scale biodiversity patterns (Qian & Rick-

lefs 2007). Empirical measures of b-diversity can be used

to delineate biotic regions (Holt et al. 2013) and to inform

the optimal configuration of reserves (Wiersma & Urban

2005). b-diversity has been used to evaluate the land-

scape-scale implications of farm management (Gabriel

et al. 2006) and to assess the effects of environmental

change on biotic homogenization (Baiser et al. 2012).

Because c-diversity is entirely determined by the a- and

b-components of diversity, empirical estimates of b-diver-
sity link biodiversity at local and regional scales (Smith

2010). Turnover in abundance also has important implica-

tions for ecosystem functioning and monitoring responses

to disturbance (Balata, Piazzi & Benedetti-Cecchi 2007).

A key distinction is between b-diversity metrics that use

presence–absence data and metrics that use species abun-

dances (Anderson et al. 2011). Abundance data are clearly

more information-rich than presence–absence data, and

this can change how we interpret spatial variation in

assemblage structure (Cassey et al. 2008). For presence–
absence metrics, the only visible differences between sites

are in species identities. Abundance-based measures detect

more nuanced variation: we may observe all the same spe-

cies at two sites, but those species may have different

abundance ranks (the commonest species here may be

rare there and vice versa). Even when the ranks are the

same, evenness of abundances can vary (the common spe-

cies can be more or less dominant). Consequently, we dis-

tinguish sensitivity to (i) species turnover, (ii) species

richness differences (iii) rank abundance shifts and (iv)

evenness differences as distinct components of b-diversity.
Abundance-based indices may also be expected to be

more robust to incomplete sampling (Beck, Holloway &

Schwanghart 2013): stochastic differences in rare species

are an artefact of undersampling, but abundance-based

metrics are less influenced by turnover of rare species than

their presence–absence counterparts. Whilst abundance

information makes our inferences about b-diversity more

powerful, it also introduces a source of subjectivity: we

need to decide how to weight turnover in common and

rare species.

Koleff, Gaston & Lennon (2003a) compared the perfor-

mance of 24 presence–absence metrics of b-diversity and

identified a number of trade-offs and redundancies among

the presence–absence metrics available. Overall, they rec-

ommended bsim (Lennon et al. 2001) as the best-perform-

ing index. We are lacking an equivalent investigation into

the performance and ‘personality’ of the many abun-

dance-based metrics available.

We test 16 conceptual properties that are important

for an abundance-based b-diversity metric, whatever the

application. Where applicable, we note the relationship

between these properties and those previously described in

the literature.

desirable properties

We make a distinction between conceptual and statistical

properties. Conceptual properties (C1–C16) are intrinsic

to the design of the metric (e.g. the use of abundance

information and whether the metric has a fixed upper

limit). Sampling properties (S1–S2) explore responses to

undersampling: true differences between assemblages are

confounded by imperfect detection, especially of rare spe-

cies. We consider both conceptual and sampling proper-

ties as desirable when choosing a metric.

Independence of a-diversity (C1)

b-diversity should be independent of a-diversity within

assemblage pairs, so that the a- and b- components of

diversity can be partitioned (Jost 2007; Chase et al. 2011)

and b-diversity can be meaningfully compared between

regions differing in a-diversity. If a- and b-diversities are

independent, then pairs of assemblages with the same pro-

portion of species turnover should have the same value of

b-diversity, regardless of whether a-diversity within those

assemblages is high or low. Legendre & De C�aceres

(2013: property 10) test this property algebraically for 16

dissimilarity metrics. In P1, we consider an alternative

where assemblage pairs have unequal species richness.

b is cumulative along a gradient of species turnover

(C2)

When assemblages are positioned along an environmental

gradient, species turnover will be directional. Koleff, Gas-

ton & Lennon (2003a) call this property additivity. Spe-

cies are gradually replaced as conditions change, so

turnover between neighbouring pairs of assemblages is

lower than between pairs that are farther apart. When

samples A, B and C are positioned in sequence along such

a gradient, summed b-diversity between consecutive pairs

of samples (bA,B + bB,C) should equal the total b-diversity
between the end points of the gradient (bA,C). Metrics

with disproportionate sensitivity to small amounts of

turnover will lead to overestimates of cumulative b.

Similarity is probabilistic when assemblages are

independently and identically distributed (C3)

When assemblages are independently drawn from within

a larger, well-mixed metacommunity, then similarity (i.e.

1-b for metrics with an upper limit of 1) among multiple

pairs of assemblages should be probabilistic. The expected

similarity of assemblages A and C (1-bA,C) is given by the

product of similarities between A and B, and B and C,

(1-bA,B)*(1-bB,C). Metrics that lack an upper limit cannot
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be converted to their similarity complement and so cannot

be probabilistic.

Minimum of zero (C4)

Legendre & De C�aceres (2013: property 1) state that when

comparing an assemblage to itself, b should always be

zero, and when comparing two different assemblages, b
should be equal to or greater than zero.

Fixed upper limit (C5)

Legendre & De C�aceres (2013: property 9) note that bounded

metrics are easier to compare than unbounded ones. For

example, the maximum value of bEuclidean and bManhattan

depends on the combined abundances of an assemblage pair,

making it difficult to interpret the values of b when assem-

blage pairs have different numbers of individuals.

Monotonic increase with species turnover (C6)

b should be a strictly increasing monotonic function of

the proportion of species in the first assemblage that are

replaced by new species in the second assemblage; other-

wise, it is not reflecting species turnover. A pair of assem-

blages in which 20% of assemblage A species are replaced

by new species in assemblage B should have lower

b-diversity than an assemblage pair with 40% turnover.

The property is closely related to the property described

by Jost, Chao & Chazdon (2011) as monotonicity.

Monotonic increase with the decoupling of species ranks

(C7)

An abundance-based b-diversity metric should be sensitive

to the degree to which species ranks are decoupled between

assemblage pairs (reflecting differences in the dominant and

rare species). Therefore, b-diversity should decrease mono-

tonically with increased correlation between species ranks.

Monotonic increase with differences in evenness (C8)

Even if two sites have the same species, with the same

rank order of abundances, they may still differ in even-

ness: the commonest species may dominate more in some

sites than others. A good abundance-based b-diversity
metric should increase monotonically as differences in

evenness between sites grow larger. Properties C7 and C8

are two aspects of a property described as monotonicity

to changes in abundance by Legendre & De C�aceres

(2013: property 3).

b is lower for complete decoupling of species ranks than

for complete species turnover (C9)

Consider a pair of assemblages in which all species are

unshared and a second pair of assemblages in which all

species are shared, but the rank abundances are reversed,

such that the dominant species in assemblage A becomes

the rarest in assemblage B and vice versa. The first pair of

assemblages must be considered more different than the

second pair.

b is lower for evenness differences than for complete

species turnover (C10)

As an alternative scenario for abundance differences, con-

sider a pair of assemblages in which all species are shared:

in the first assemblage, the abundances are perfectly even

and in the second assemblage, all species are singletons

except the dominant species (e.g. extreme unevenness).

Compare this to an assemblage pair where all species are

shared. As above, the loss or gain of a species should

always be deemed a more extreme difference than a shift

in its abundance. Sites with no species in common should

have the largest values of b (Legendre & De C�aceres

2013: property 5). Properties C9 and C10 describe two

alternative scenarios in which this property should hold.

Symmetry (C11)

Legendre & De C�aceres (2013: property 2) and Koleff,

Gaston & Lennon (2003a) note that the order in which

two assemblages, A and B, are considered should not

change the value of b for that pair (e.g. bA, B = bB, A).

Double-zero asymmetry (C12)

Legendre & De C�aceres (2013: property 4) argue that

the absence of a species from both assemblages does not

indicate resemblance between the two assemblages in the

way that shared presences do: double absences contain

no information about the distance in ecological niche

space. Consequently, the addition of zero abundances to

both assemblages should not change the value of b,
whilst the addition of shared presences should lower the

value of b.

b does not decrease in a series of nested assemblages

(C13)

Metrics vary in how they respond to nestedness. However,

b should never decrease when species richness differences

increase, as the addition of unique species should not

increase similarity (Legendre & De C�aceres 2013: property

6).

Independence of species replication (C14)

When all species in both the assemblages being compared

are duplicated, the value of b should remain constant.

This becomes important when identical subsets of an

assemblage are pooled (Jost, Chao & Chazdon 2011;

Legendre & De C�aceres 2013: property 7).

© 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of

Animal Ecology, 84, 1112–1122

1114 L. J. Barwell, N. J. B. Isaac & W. E. Kunin



Independence of units of abundance (C15)

When comparing b among regions differing in productiv-

ity or the units used to measure abundance, metrics that

are sensitive to the total abundance in an assemblage pair

will be inappropriate. Legendre & De C�aceres (2013:

property 8) call this property invariance to measurement

units.

Independent of differences in abundance (C16)

This property was described as invariance to the total

abundance in each assemblage by Legendre & De C�aceres

(2013: property 11) and density invariance by Jost, Chao

& Chazdon (2011). It is designed to identify metrics that

are mathematically dependent on differences in abundance

between sampling units. C15 and C16 differ from under-

sampling in that there is no stochasticity.

Unbiased by undersampling (S1)

In all previous simulations, we have assumed our simu-

lated assemblages represent the ‘true’ composition. How-

ever, b-diversity is usually estimated from samples, which

generates differences in richness and abundances as a

sampling artefact (Chao et al. 2005, 2006). A good b-
diversity metric should remain constant as the sample size

decreases.

Unbiased by unequal sampling effort (S2)

Differences in sample size can also inflate b-diversity due

to imperfect detection of rare species. A good b-diversity
metric should remain constant with increasing difference

in sample sizes.

personality properties

In addition to the desirable properties identified above,

b-diversity metrics may differ in other respects that are

worthy of note. We term this the ‘personality’ of the met-

rics and their importance will depend on the ecological

question concerned.

Sensitivity to nestedness (P1)

For presence–absence metrics, Koleff, Gaston & Lennon

(2003a) distinguish ‘narrow-sense’ metrics, which measure

purely species turnover, from ‘broad-sense’ metrics, which

measure both species turnover and differences in species

richness. We may want a b-diversity metric to reflect dif-

ferences in richness, as these will mean that one site will

have species that are absent in another. On the other

hand, we may want the value of b to measure purely spe-

cies turnover, especially if we are comparing b-diversity
between regions with different species richness. This

differs from the test in C1 (independence of differences in

a-diversity): in C1, each pair of assemblages we compare

has an equal number of species. Here, species richness

differs between the two assemblages we compare.

Relative sensitivity to nestedness and turnover

components of b (P2)

We test two metrics (bBray-Curtis and bRuzicka) that can

be additively partitioned into independent nestedness

and turnover components (Baselga 2013; Podani,

Ricotta & Schmera 2013; Legendre 2014). For metrics

that cannot be deconstructed, it is useful to compare

the value of b for complete turnover to that for

extreme nestedness to estimate the relative sensitivity to

these components.

Relative weighting of species turnover and abundance

differences (P3 and P4)

We have identified two ways in which species abundances

can vary between assemblages: decoupling of species

ranks and differences in evenness. The relative weighting

of these components and species turnover is a useful

property to quantify. The ideal weighting is somewhat

subjective (provided that b-diversity is less for extreme

differences in abundance than for turnover of a species,

see C9 and C10, above).

Relative sensitivity to turnover of rare versus common

species (P5)

There is scope for variation in how common versus rare

species contribute to b. One reason for investigating this

is the occupancy–abundance relationship (ONR). Positive

ONRs are nearly ubiquitous (Brown 1984) and reflect that

rare species are generally more range restricted and so

more likely to be turned over than are locally abundant

(and more widespread) species.

Here, we manipulate the composition and structure of

hypothetical assemblages and apply 29 b-diversity metrics

to the resulting assemblage pairs. Each metric is evaluated

against 18 desirable properties (C1–C15 and S1–S2) to

generate a score card, which we use to identify the best-

performing abundance-based b-diversity metrics. We then

explore how personality properties may affect the choice

of metric for different ecological applications.

Materials and methods

b-diversity metrics

In total, we evaluated 24 abundance-based metrics and five pres-

ence–absence metrics (Appendix S1, Supplementary Information).

All metrics are expressed so that higher values of b indicate more

differentiation (1-b for similarity metrics). For comparability,

metrics were rescaled relative to the maximum value obtained in

each set of simulations, before calculating scores.
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hypothetical species assemblages

Abundance differences in our hypothetical assemblages were

modelled using the log series distribution (Fisher, Corbet & Wil-

liams 1943) using the function fisher.ecosystem in R package

‘untb’ (Hankin 2007). Our conclusions would be qualitatively

identical using other commonly used models of the species abun-

dance distribution (McGill 2010). A hypothetical species assem-

blage with 100 species and 10 000 individuals was used as the

starting assemblage for all simulations.

evaluation of properties

For b-diversity metrics that have been previously implemented

in R, the functions vegdist and d and adipart in R package

‘vegan’ v.2.0-5 (Oksanen et al. 2013) were used to calculate

b-diversity. Formulae for the remaining metrics can be found in

Appendix S1. Each of our properties was assessed by exploring

how measured b-diversity covaried with a test-specific parame-

ter, describing some aspect of assemblage structure. We manipu-

lated the starting assemblage according to the specific rules for

each test. Each simulation described below was run 10 000 times

at each unique combination of the test-specific parameter and

proportion species turnover, t = 0, 0�2, 0�4, �0�6, 0�8 and 1�0, to
obtain median b for that combination. All simulations were car-

ried out in R v.3.0.3 (R Core Team 2014). Formulae for evalu-

ating b-diversity metrics for each of the properties can be found

in Appendix S2.

Independence of a-diversity (C1)

Fisher’s a of assemblages was manipulated using the function

fisher.ecosystem in R package ‘untb’ (Hankin 2007). The expected

number of individuals was fixed at N = 10 000, whilst manipulat-

ing the number of expected species, S, to generate a series of

assemblages with S = 300, 250, 200, 150, 100, 80, 60, 40, 20 and

10. Fisher’s a was estimated for each assemblage. For each

a-diversity:turnover combination, we calculated error as the

difference between the median b-diversity at each level of a and

the median b-diversity when a was highest (S = 300): dependence

on a-diversity was measured as the root-mean-squared error

(RMSE).

b is cumulative along a gradient of species turnover

(C2)

In each simulation, three assemblages, A, B and C, were gener-

ated according to the following rules: a proportion of species, t,

in assemblage A were randomly selected to be turned over in

assemblage B (t = 0, 0�1, 0�2, 0�3, 0�4 and 0�5). Of the species in

assemblage B, the same proportion was turned over in assem-

blage C, with the condition that species shared between assem-

blages A and B were g times more likely to be turned over in

assemblage C than species unique to assemblage B, where g is a

test-specific parameter which we manipulate to simulate different

strengths of directional species turnover (g = 1, 5, 10, 50, 100,

500 or 1000). At each turnover:gradient combination, we calcu-

lated error as the difference between observed b-diversity for

assemblages A and C (bA,C) and the value predicted if the metric

was cumulative (bA,B + bB,C): departure from cumulative b was

evaluated as the RMSE.

Similarity is probabilistic when assemblages are

distributed independently and identically in space (C3)

In each simulation, three assemblages, A, B and C, were generated

according to the following rules: a proportion, p (p = 0–1 in incre-

ments of 0�2), of the species in assemblage 1 were randomly selected

to be conserved in assemblage 2. This process was repeated with

the species in assemblages 1 and 2 (with the same value of p) to

obtain the third assemblage. Species lost from assemblage A can

reappear in assemblage C, as we would expect in independent sam-

ples drawn from a well-mixed species pool, but entirely novel spe-

cies can also appear in assemblage C. In each simulation, we

calculated error as the difference between observed similarity for

assemblages A and C (1�bA,C) and the similarity predicted if the

metric is probabilistic (1�bA,B)(1�bB,C): departure from probabi-

listic similarity was evaluated as the RMSE.

Minimum of zero (C4)

The starting assemblage was manipulated to generate assemblage

pairs with increasing differences in species turnover, t; decoupling of

species ranks, r; and evenness differences, DE. Methods for these sim-

ulations can be found in C7 and C8. Two behaviours were tested: (i)

b is zero for identical assemblages and (ii) b is greater than or equal

to zero when assemblages are different, either because of species turn-

over, decoupling of species ranks or evenness differences. The metric

was scored as TRUE if both qualities were met.

Fixed upper bound (C5)

This property was evaluated as TRUE/FALSE by applying equa-

tion 8 and then equation 3 in Legendre & De C�aceres (2013:

property 9) to calculate the upper limit of a metric, using a pair

of assemblages with no shared species.

Monotonic increase with species turnover (C6)

A series of assemblages with increasing species turnover was gen-

erated by randomly selecting a proportion of species (t = 0–1 in

increments of 0�2) in the starting assemblage and assigning them

a new identity in the new assemblage. Metrics were scored as

TRUE if each consecutive increase in species turnover generated

an increase in median b.

Monotonic increase with decoupling of species ranks

(C7)

A series of assemblages with increased decoupling of species

ranks was generated by determining species ranks in the new

assemblage partially by the ranks in the starting assemblage and

partially at random (r = +1�0 (a perfect positive correlation

between ranks) to �1�0 (a perfect negative correlation) in incre-

ments of 0�1). Metrics were scored as TRUE if each incremental

decrease in r, generated an increase in median b at a given level

of species turnover.

Monotonic increase with differences in evenness (C8)

In the starting assemblage for this test all except the dominant

species have just one individual (extreme unevenness). A series of
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assemblages with increasing evenness differences was generated

by redistributing individuals from the dominant species among

the other 99 species: the probability of being allocated to each

species was determined by raising the abundances in a Fisher’s

log series distributed assemblage to a power, b = 0�2, 0�4, 0�6,
0�8, 1�0, 1�2, 1�4, 1�6, 1�8 2�0, 4�0, 6�0 and 8�0. These values were

chosen to generate assemblages with both more and less evenness

relative to a Fisher’s log series distribution. Metrics were scored

as TRUE if each incremental increase in DE led to an increase in

median b.

b under extreme decoupling of species ranks < b when

species turnover is complete; b under extreme

evenness differences < b when species turnover is

complete (C9 and C10)

The turnover of a species should be weighted greater than a

change in abundance. Metrics were scored as TRUE for these

two properties if median b is lower for extreme decoupling of

species ranks (r = �1) and extreme evenness differences

(DE = 0�97) than for complete species turnover (t = 1). The rela-

tive weighting of abundance differences and species turnover also

has a personality component (see P3 and P4).

Symmetry (C11)

Symmetry was tested by reversing the order in which assemblages

A and B were given to a metric. This was tested for assemblage

pairs with multiple levels of species turnover, t; decoupling of

species ranks, r; and evenness differences, DE. A metric was

scored as TRUE if bA,B = bB,A in all simulations.

Double-zero asymmetry (C12)

We generated a series of eleven assemblage pairs, the first with no

double zeros and then consecutively adding up to 10 double zeros

to the assemblage pair. This was repeated, but adding double pres-

ences of equal abundance. Abundances in each simulation were

chosen at random from within the starting assemblage. Two behav-

iours were tested: (i) b does not change with the addition of double

zeros and (ii) b decreases with the addition of double presences.

Metrics were scored as TRUE if both conditions were met.

b does not decrease in a series of nested assemblages

(C13)

A series of nested assemblages was generated by randomly select-

ing a number of species to be lost from the starting assemblage

(S = 0–90 in increments of 10). Metrics were scored as TRUE if

each incremental increase in species loss led to an increase in

median b.

Independence of species replication (C14)

A series of 10 assemblage pairs with all species replicated x times

at six levels of species turnover, t, was used to simulate the effect

of pooling identical subsets of unshared species. At each combi-

nation of x (in 1–10) and t, error was calculated as the difference

between median b in one identical subset and when x identical

subsets were pooled. Metrics were scored as the RMSE.

Independent of the units of abundance (C15)

Following the method in Legendre & De C�aceres (2013), we test

this property by generating a series of assemblage pairs in which

the abundances in both assemblages are multiplied by a constant

factor (cc = 1–10). Error was calculated as the difference between

median b in the starting assemblage pair (cc = 1) and between

median b at each combination of cc and species turnover, t.

Metrics were scored as the RMSE.

Independence of differences in abundance (C16)

We test this property by generating a series of assemblage pairs

in which the abundances in one assemblage are multiplied by a

constant factor, (c = 1–10). At each c:turnover combination,

error was calculated as the difference between median b at each

value of c and median b in the starting assemblage pair, (c = 1).

Metrics were scored as the RMSE.

The following two properties test the behaviour of metrics

when samples are used to infer b-diversity.

Independence of sample size (S1)

For a series assemblage pairs with different levels of turnover, t,

both assemblages were randomly sampled, without replacement,

to generate a series of assemblage pairs with equal sample sizes

of N = 10 000 (fully censused), 9000, 8000, 7000, 6000, 5000,

4000, 3000, 2000, 1000, 500, 200, 100, 50, 20 and 10. For each

sample size:turnover combination, error was calculated as the dif-

ference between median b-diversity at sample size N and median

b-diversity in a fully censused assemblage: dependence on sample

size was measured as the RMSE.

Independence of unequal sample sizes (S2)

For a series of assemblage pairs with different levels of turnover,

t, one assemblage in each pair was randomly sampled, without

replacement, whilst the other was fully sampled to generate sam-

ple size differences of DN = 0, 1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, 9500, 9800, 9900, 9950, 9980 and 9990.

As above, for each DN:turnover combination, we calculated error

as the difference between the median b-diversity at sample size

difference DN and median b-diversity when both assemblages

were fully censused (DN = 0): dependence on unequal sample size

was measured as the RMSE.

Sensitivity to nestedness (P1)

To generate ten assemblages with differences in species richness,

DS, we randomly selected S species (see C13) to be lost from the

starting assemblage. For each species loss:turnover combination,

we calculated error as the difference between the median b-diver-
sity for S and median b-diversity when species richness was equal

(S = 0): sensitivity to nestedness was measured as the RMSE.

Relative sensitivity to nestedness and turnover (P2)

This property was measured as the ratio of b under extreme nest-

edness but no turnover (DS = 90, t = 0) and the value for com-

plete species turnover but no species loss (t = 1, DS = 0).

© 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of
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Relative sensitivity to abundance differences and

species turnover (P3 and P4)

We calculated b under extreme decoupling of species ranks

(r = �1), and extreme differences in evenness (DE = 0�97), using
simulated assemblages from C7 and C8. These values were

expressed as a proportion of the value of median b under com-

plete species turnover, t = 1.

Relative sensitivity to turnover in rare versus common

species (P5)

We turned over a single species in the starting assemblage, from

the dominant (1450 individuals) to the rarest species (1 individ-

ual) and recorded the value of b for each. Relative sensitivity to

rare and common species was evaluated as the ratio between b
when the rarest species was turned over to b when the dominant

species was turned over.

In order to investigate redundancy and complementarity

among the 29 metrics, a principal component analysis was per-

formed using all quantitatively measured properties, using the

function prcomp in R version 3.0.3 (R Development Core Team,

2014). We also investigate which of the metrics are Pareto-domi-

nated, that is, those metrics that are outperformed or equalled

across all desirable properties.

Results

We have scored the performance of 29 metrics for 16 con-

ceptual and two sampling properties (Table 1). In addi-

tion, a further five personality tests have enabled us to

identify more subjective variation in metrics’ behaviour

(Table 2). The results of all simulations are presented in

Appendix S3.

conceptual and sampling properties

All 29 metrics satisfied properties C4, C6 (minimum of zero

and positiveness, monotonic increase with species turnover:

Fig. S4) and C11 (symmetry). We use the remaining proper-

ties to discriminate between the performances of metrics.

Thirteen metrics were Pareto-dominated (Tables 1, S5). We

focus on the metrics that performed best against the con-

ceptual and sampling properties and consider their con-

trasting strengths and weaknesses.

Nine metrics passed all qualitatively scored tests (bMori-

sita, bHorn, bMorisita-Horn, bJost Simpson bRenkonen, bKulczynski,

bBray-Curtis, bCanberra and bRu�zi�cka,: C5–C13, Table 1). The

presence–absence metrics bsim, bClassic Jaccard and bClassic
Sørensen failed only C7 and C8 (monotonic increase with

decoupling of species ranks and evenness differences: Figs

S5 and S6), as such measures, by definition, are insensitive

to differences in abundance. All abundance-based metrics

became less sensitive to abundance differences as the spe-

cies turnover between assemblages became more extreme

(Figs S5 and S6).

Across all quantitative tests, bMorisita obtained the best

mean score. The presence–absence metric, bsim, performed

best or joint best for six of the eight quantitative concep-

tual and sampling properties, with the exception of C2 (b
is cumulative) and S1 (independence of sample size).

bMorisita was the most robust metric to undersampling,

performing best when both assemblages were undersam-

pled (S1) and second best under unequal sample sizes

(S2). bsim was best for S2, but performed poorly for S1

(Figs S2 and S12: Table 1). bCanberra scored equally highly

with bsim, bClassic Sørensen and bClassic Jaccard for C1 (inde-

pendence of a-diversity: Fig. S1), C14 (independence of

species replication: Fig. S7) and C15 (independence of

measurement units: Fig. S8), but performed poorly on C2

(b is cumulative: Fig. S2), C3 (similarity is probabilistic:

Fig. S3) and C16 (independence of differences in abun-

dance: Fig. S9) and for both sampling properties (S1 and

S2). bBinomial was joint best for C15 (independence of

measurement units: Fig. S8), but performed poorly for all

other quantitative properties. bHorn and bRenkonen per-

formed relatively well across all quantitative properties,

but were never best for any property.

In sampling simulations S1 and S2 (Table 1; Figs S12

and S13), most presence–absence metrics were positively

biased by undersampling, with the exception of bChao
Sørensen and bChao Jaccard which have a correction for un-

dersampling.

personality properties

With the exception of bsim and the partitioned turnover

components of bBray-Curtis and bRu�zi�cka, all metrics were at

least somewhat sensitive to nestedness (P1), although

there were fourfold differences in the degree of sensitivity

to species richness differences (P2, Table 2).

The relative weighting of abundance differences and

turnover varied substantially among abundance-based

metrics (Table 2). With the exception of bGower balt. Gower,

bAv. Euclidean, bLande Simpson and bEuclidean, metrics were

more sensitive to species turnover than differences in

abundance (P3: decoupling of species ranks, P4: differ-

ences in evenness, Figs S5 and S6).

The relative sensitivity to turnover in rare versus com-

mon species (P5) varied substantially among metrics from

equal weighting of rare and common species (all pres-

ence–absence metrics) to metrics that had a negligible

response to turnover in rare species (bMorisita: Fig. S11).

A principal component analysis revealed substantial

redundancy among the 29 metrics investigated (Fig. 1).

Discussion

Our results identify a number of trade-offs in perfor-

mance, consider redundancy and complementarity among

existing metrics and suggest areas to be addressed in the

design of new metrics.

In choosing a metric, we suggest that our desirable

properties will provide a useful primary filter in choosing

a metric. We focus on the best-performing metrics in

Table 1, but other metrics may still be useful if the

© 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of
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relative weighting of the desirable properties is changed,

or if personality properties or additional properties,

untested here, become important. Our personality proper-

ties highlight two additional sources of variation which

may further filter the appropriate metrics for some applica-

tions: (i) sensitivity to rare species and (ii) sensitivity to

nestedness. Our results indicate the first of these is traded-

off with performance for sampling properties (Fig. S16).

The most extreme example of this trade-off is bMorisita,

which is the most independent of sample size (Fig. S10),

Table 2. Summary of scores for personality and sampling properties among 29 beta-diversity metrics. Properties P1–P5 are described in

the text

Metric

Personality properties

P1 P2 P3 P4 P5

Morisita 0�2862 0�8538 0�9940 0�9798 0�0000
Horn 0�1989 0�6046 0�9012 0�9195 0�0007
Morisita-Horn 0�2861 0�8541 0�9940 0�9798 0�0000
Renkonen 0�3305 0�9150 0�9544 0�9801 0�0007
Jost Simpson 0�2631 0�7453 0�9880 0�9604 0�0000
Kulczynski 0�1619 0�4575 0�9544 0�9801 0�0007
Bray-Curtis 0�2678 0�8433 0�9544 0�9801 0�0007
Canberra 0�2759 0�9000 0�7979 0�9802 1�0000
Ru�zi�cka 0�2825 0�9150 0�9767 0�9900 0�0008
Baselga B-C turn* 0�0198 0�0000 0�9544 0�9801 0�0007
NESS 0�2424 0�7749 0�9634 0�9289 0�0000
Baselga R turn* 0�0219 0�0000 0�9767 0�9900 0�0008
Podani B-C turn* 0�2672 0�0000 0�9543 0�9801 0�0007
Podani R turn* 0�3154 0�0000 0�9767 0�9900 0�0008
sim 0�0000 0�0000 0�0000 0�0000 1�0000
Classic Sørensen 0�2574 0�8182 0�0000 0�0000 1�0000
Classic Jaccard 0�2759 0�9000 0�0000 0�0000 1�0000
Jost Shannon 0�1675 0�1807 0�8676 0�8915 0�0007
Chao Sørensen 0�2665 0�8406 0�0000 0�0000 0�0000
Chao Jaccard 0�2819 0�9134 0�0000 0�0000 0�0000
Lande Shannon 0�1996 1�4297 0�9012 0�9195 0�0007
CYd 0�2582 0�9001 0�6221 0�6243 0�1682
Lande Simpson 0�1121 5�0896 0�9940 48�5149 0�0000
Binomial 0�1823 0�4500 0�3264 0�4599 1�0000
Gower 0�2759 0�9000 1�0000 1�0000 1�0000
Manhattan 0�1860 0�4575 0�9544 0�9801 0�0007
alt. Gower 0�2154 0�9150 1�9088 1�9602 0�0007
Av. Euclidean 0�2430 0�9766 1�4099 9�8504 0�0007
Euclidean 0�2303 0�6905 0�9970 6�9653 0�0007
*Partitioned turnover component of b.

Fig. 1. Biplot of the first two principal

components axes of the scores of 29 b-
diversity metrics based on quantitative

scores for properties C1–C2, C14–C16,
S1–S2 and P1–P5. Four partitioned turn-

over components are also shown, using

the partitioning methods proposed by

Baselga (2013) and Podani, Ricotta &

Schmera (2013). Together, PC1 and PC2

explain 52% of variation in scores.
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at the expense of being almost completely insensitive to

turnover in rare species (Fig. S13). b-diversity metrics fall

along a continuum in terms of sensitivity to rare species.

bClassic Sørensen is conceptually linked to species richness

metrics of a-diversity such that rare and dominant species

are weighted equally. bHorn relates to Shannon entropy:

species are weighted by their relative abundance. bMorisita

is linked to the Gini-Simpson index of a-diversity (Jost

2007): rare species contribute little to the final value of

these metrics. Consequently, bMorisita performs well, even

with the very partial samples that ecologists usually work

with, because the missing rare species in small samples

have a negligible effect on the value of b. This may be

important: the emphasis bMorisita places on common spe-

cies is suitable when shifts in dominance are of interest

(e.g. when linking diversity to ecosystem function), but

will be less appropriate when patterns of turnover in rare

species of particular interest (e.g. complementarity of

reserve networks: Wiersma & Urban (2005)). Unfortu-

nately, those metrics that are sensitive to turnover in rare

species are, consequently, less robust in the face of under-

sampling.

In general, our results suggest that when insensitivity to

sample size (S1 and S2), sensitivity to turnover of individ-

uals (C7 and C8) and/or cumulative b (C2) are priorities,

bMorisita should be favoured. When turnover in rare spe-

cies is important and undersampling is not severe, the

presence–absence metric, bsim, is favoured due to superior

performance in terms of independence of a-diversity (C1),

probabilistic similarity (C3), independence of species repli-

cation (C14), measurement units (C15) and differences in

abundance (C16). However, bMorisita is almost completely

independent of sample size (S1), whilst bsim, bClassic Sørensen

and b
Classic Jaccard

are eleventh, twelfth and eighteenth. This is

consistent with predictions that presence–absence metrics

are more sensitive to sample sizes.

An example of where our results have implications for

existing studies of b-diversity is in the spatial scaling of

b-diversity. Studies using presence–absence metrics have

shown that b-diversity decreases with the spatial grain of

samples (McGlinn & Hurlbert 2012; Barton et al. 2013).

One reason for this is statistical: the probability of a rare

species being turned over increases at finer grains (Keil

et al. 2012) both because rare species are range-restricted

and because fine-grain samples have (almost by definition)

much smaller sample sizes of individuals than do coarse-

grain samples. By contrast, common species are usually

more widespread than rare species and much less likely to

be turned over at fine grains. The trade-off we have noted

between robustness to undersampling and sensitivity to

rare species thus becomes relevant here: those metrics

which weight rare species turnover highly (including all

presence/absence measures) will likely find b shifting

with scale. It follows that abundance-based metrics, par-

ticularly those disproportionately influenced by dominant

species, will likely be less scale dependent than presence–
absence metrics (Fig. S15).

A second consequence of this trade-off is that metrics

that are insensitive to turnover in rare species will also

return very low values of beta under a positive occu-

pancy–abundance relationship (Fig. S14), a pattern that is

near ubiquitous. Specialist applications focussing on rare

species may need to use metrics that are less robust to un-

dersampling but, consequently, will require larger sample

sizes to observe the rarer species: no abundance-based

metric is able to account for unseen shared species (i.e.

abundance-based equivalents of bChao Sørensen and

bChao Jaccard).

Another potential filter of metrics is sensitivity to

nestedness (P1). There are circumstances when the parti-

tioning of the nestedness and turnover components will

be a priority when choosing a metric. First, metrics

measuring purely species turnover address methodologi-

cal issues associated with species richness gradients (e.g.

latitudinal gradients: Koleff, Lennon & Gaston 2003b).

Moreover, patterns of nestedness and turnover are likely

to emerge as a result of different processes: distinguish-

ing these patterns may contribute to a more mechanistic

understanding of spatial patterns in b-diversity (e.g.

Baselga 2010). Our simulations include two abundance-

based metrics, bBray-Curtis and bRu�zi�cka, that can be addi-

tively partitioned into independent nestedness and turn-

over components. We find the partitioning method

described by Baselga (2013) generates turnover compo-

nents that are independent of nestedness, whilst the

method proposed by Podani, Ricotta & Schmera (2013)

does not.

A principal component analysis indicated a large

amount of redundancy among metrics. Yet our results

highlight one property which is lacking among existing

abundance-based b-diversity metrics. Three pieces of

information are absent in samples of species assemblages;

(i) how many species are missing in the sample, but pres-

ent at the site, (ii) their abundances and (iii) whether they

are shared or unshared between undersampled assem-

blage pairs. Abundance-based b-diversity metrics that

estimate this information and adjust the value of b
accordingly are one avenue for improving performance

when there is undersampling. Recent developments in

biodiversity sampling theory (Green & Plotkin 2007;

Morlon et al. 2008; McGill 2011) and hierarchical Bayes-

ian techniques that model the observation process (K�ery

& Royle 2008) provide a useful starting point for devel-

oping such metrics.

The issues we have raised highlight that b-diversity is a

multi-faceted concept. Any study measuring b-diversity
should be explicit about its goals (which properties should

be emphasized) and assumptions (e.g. about sampling)

when filtering the available metrics.

Data accessibility

Code for simulations is available from figshare: http://dx.doi.org/

10.6084/m9.figshare.1305115 (Barwell, Isaac & Kunin 2015).
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