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Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in 12 

June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. 13 

Evidence of shell fracture and subsequent re-growth is commonly observed in 14 

specimens recovered from the sub-Arctic and further afield. However, at one site within 15 

sea-ice on the Greenland shelf, shells that had been subject to mechanical damage were 16 

also found to exhibit considerable dissolution. It was evident that shell dissolution was 17 

localised to areas where the organic, periostracal sheet that covers the outer shell had 18 

been damaged at some earlier stage during the animal’s life. Where the periostracum 19 

remained intact, the shell appeared pristine with no sign of dissolution. Specimens 20 

which appeared to be pristine following collection were incubated for four days. 21 

Scarring of shells that received periostracal damage during collection only became 22 

evident in specimens that were incubated in waters undersaturated with respect to 23 

aragonite, Ar≤1. While the waters from which the damaged specimens were collected 24 

at the Greenland Sea sea-ice margin were not  Ar ≤1, the water column did exhibit the 25 

lowest Ar values observed in the Greenland and Barents Seas, and was likely to have 26 

approachedAr≤1 during the winter months. We demonstrate that L. helicina shells are 27 

only susceptible to dissolution where both the periostracum has been breached and the 28 

aragonite beneath the breach is exposed to waters of Ar≤1. Exposure of multiple layers 29 

of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina 30 

is able to patch up dissolution damage to the shell by secreting additional aragonite 31 
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internally and maintain their shell. We conclude that, unless breached, the 32 

periostracum provides an effective shield for pteropod shells against dissolution in 33 

waters Ar≤1, and when dissolution does occur the animal has an effective means of 34 

self-repair. We suggest that future studies of pteropod shell condition are undertaken 35 

on specimens from which the periostracum has not been removed in preparation. 36 
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 59 

INTRODUCTION 60 

Since the start of the Industrial Revolution, about 48% of the anthropogenic CO2 emitted to 61 

the atmosphere has been sequestered into the world’s oceans (Sabine et al., 2004). This 62 

excess CO2 is dissolved into the surface ocean and reacts with seawater, causing pH and 63 

dissolved carbonate ion concentrations, [CO3
2 −

], to fall, a phenomenon commonly referred to 64 

as ocean acidification (Caldeira & Wickett, 2003; Orr et al., 2005). In the polar-regions, 65 

ocean acidification is further exacerbated by increased solubility of gases within colder 66 

waters (Fabry et al., 2009) and also by sea ice processes, which can amplify seasonal 67 

variability in saturation state of mixed layer waters (Fransson et al., 2013). Furthermore, 68 

increased ice melt is freshening the mixed layer, lowering Total Alkalinity (TA) and 69 

Dissolved Inorganic Carbon (DIC) concentration. Carbonate saturation of polar waters is 70 

rapidly falling to values where aragonite, the less stable form of calcium carbonate (Mucci, 71 

1983), becomes susceptible to dissolution (Ar ≤1; Orr et al., 2005). Pteropods, or ‘sea 72 

butterflies’, are pelagic gastropods which have evolved ‘wings’ derived from the foot 73 

enabling them to swim. The delicate shells of pteropods are made of the metastable aragonite 74 

and thus may be particularly prone to dissolution. 75 

 The true polar pteropod, Limacina helicina, is a keystone species within polar ecosystems 76 

(Lalli & Gilmar 1989; Comeau et al., 2009; Hunt et al., 2008; Hunt et al., 2010). Living in the 77 

upper few hundred meters of the water column, in waters which are becoming increasingly 78 

undersaturated with respect to aragonite, L. helicina is frequently presented as being the 79 

“canary in the coal mine” for ocean acidification (e.g. Orr et al., 2005). Incubation 80 

experiments, investigating the response of the Arctic sub-species L. helicina helicina (Hunt et 81 

al., 2010) to elevated pCO2 scenarios indicate reduced net calcification (Comeau et al., 2010) 82 

and degradation in shell condition in undersaturated waters (Lischka et al., 2011). 83 

Observations of living specimens collected from a region of upwelling in the Southern 84 

Ocean, suggest that Antarctic sub-species L. helicina antarctica (Hunt et al., 2010) is subject 85 

to extensive dissolution where Ar =1 (Bednarsek et al., 2012a). However, many species of 86 

mollusc thrive with undersaturated waters, for example within freshwater or deep-sea 87 

hydrothermal vent communities, on account of their calcareous shells being protected from 88 

dissolution by the presence of a protective organic coating, a periostracum, covering their 89 

shells (Taylor & Kennedy, 1969; Harper, 1997). Possession of a periostracum is a shared 90 
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character for all shelled molluscs (Harper, 1997). This thin organic sheet of the periostracum 91 

is secreted at the edge of the mantle and is the first formed layer of the shell. The primary 92 

function of the periostracum is to separate the site of calcification from the ambient water and 93 

to provide the initial template onto which the shell is crystallised. It is this isolation of the 94 

extrapallial space by the periostracum that allows calcification to occur within waters which 95 

are undersaturated with respect to carbonate, with extreme examples being the occurrence of 96 

molluscs within hydrothermal vent (e.g. Tunnicliffe et al., 2009) and freshwater 97 

environments (e.g. Harper, 1997). A secondary function of the periostracum is to provide a 98 

protective veneer shielding the shell from the corrosive effects of undersaturated waters or 99 

chemical attack from predators (Harper, 1997). Of critical note, since the periostracum is only 100 

formed at the actively growing shell margin (Saleuddin & Petit 1983), thinning or loss of the 101 

periostracum via physical and biotic abrasion, epibiont erosion and bacterial decay will limit 102 

its effectiveness as protection as there is no possibility of repairing it once it is damaged.  103 

Although there has been very little published on biomineralization in pteropods, it is clear 104 

from the shell microstructure (Bandel, 1990) that they follow the typical molluscan pattern. 105 

In the case of Limacina the shell is composed of well ordered crossed-lamellar and prismatic 106 

aragonite layers, internal to an ultra-thin (<1 m) periostracum (Sato-Okoshi et al., 2010). 107 

The findings of Bednarsek et al. (2012a, 2012b) seem to suggest that pteropods receive little 108 

benefit from their periostracum when exposed to undersaturated waters. Quantification of 109 

pteropod shell loss by Bednarsek et al (2014a), found that 14 day exposure to undersaturated 110 

waters (Ar =0.8) resulted in a shell loss of 17.1%±3.0%. While the rate of dissolution 111 

reported by Bednarsek et al (2014a) is less than that predicted for the dissolution rate of pure 112 

aragonite, the fact that dissolution was reported over the entirety of the shells, questions the 113 

effectiveness of the periostracum for L. helicina antarctica. However, we note that Bednarsek 114 

et al. (Bednarsek et al., 2012a; Bednarsek et al., 2012c; Bednarsek et al., 2014b; Bednarsek et 115 

al., 2015) used chemical and plasma etching methods on shells prior to imaging, with the 116 

intention of removing the periostracum. Given the protective role of the periostracum in other 117 

shelled molluscs living in undersaturated waters, we opt to examine the relationship between 118 

dissolution and periostracal cover on specimens that are not subject to any preparation steps 119 

that would compromise the condition of the perioistracum or the shell beneath. Our minimal 120 

preparation approach intends to establish how effective the periostracum is in protecting the 121 

shells of pteropods. 122 
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Here we present our observations of L. helicina helicina shells collected from the Greenland 123 

and Barents Seas in June 2012 and the result of a small scale incubation experiment to assess 124 

the effectiveness of the periostracum, and therefore vulnerability, of this species to ocean 125 

acidification in the Arctic. 126 

 127 

METHODS 128 

This study carried out observations and incubations on L. helicina helicina specimens 129 

recovered during routine motion-compensated plankton net deployments during research 130 

cruise JR271 on board RRS James Clark Ross in June-July 2012. L. helcinia helicina 131 

specimens were recovered at three sites within the Greenland and Barents Seas as detailed in 132 

Table 1 and Figure 1.  133 

Water column structure and chemistry and manipulation of seawater for incubation 134 

Vertical CTD profiles were performed to characterise important water column structure 135 

(temperature, salinity, Chl-a) and carbonate chemistry. The depth of water collection for the 136 

experimental setup was then determined based on these initial profiles. The unfiltered water 137 

was collected from dedicated CTD casts and transferred to acid-cleaned clear 1 L Duran 138 

bottles and then sealed pending carbonate chemistry manipulation and the addition of 139 

pteropods. Subsamples at time zero were taken directly from the CTD and immediately 140 

measured for Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) to characterise the 141 

water column structure. DIC was analysed with an Apollo SciTech CT analyser (AS-C3), 142 

which uses a CO2 infrared detector (LICOR 7000). TA was determined using a semiclosed- 143 

cell titration (Dickson et al., 2007) within the Apollo SciTech’s AS-ALK2 Alkalinity 144 

Titrator. For both TA and DIC, the precision was 0.1% or better, with accuracy verified using 145 

certified reference materials (A.G. Dickson, Scripps). The remaining variables of the 146 

carbonate system were calculated with the CO2SYS programme (version 1.05, Lewis & 147 

Wallace, 1998; Pierrot et al., 2006), using the constants of Mehrbach et al. (1973) refitted by 148 

Dickson & Millero (1987). Carbonate chemistry in the experimental bottles was subsequently 149 

manipulated using equimolar additions of acid (HCl, 1 mol L
−1

) and HCO3
-
 (1 mol L

−1
), as 150 

recommended by Gattuso et al. (2010) for increasing DIC at constant TA. The volumes of 151 

HCl and HCO
−3

 required to adjust pCO2 to the chosen target values (650 µatm, 800 µatm) 152 
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were calculated from the measured ambient state of the carbonate system in seawater using 153 

CO2SYS. A further set of bottles remained unmanipulated (ambient). The bottles were sealed 154 

until the pteropods were added.  155 

Pteropod collection. 156 

A motion compensated Bongo net, with mesh sizes of 100 m and 200 m was deployed at 157 

dawn to 200 m below the sea surface and hauled vertically. Samples were gently transferred 158 

into a bucket of ambient seawater within which pteropods were found to settle to the bottom 159 

and could then be easily collected with a wide-mouthed plastic pipette. Visual examination of 160 

specimens under an Olympus SZX16 identified those that were actively swimming and had 161 

intact, fully translucent shells. Specimens that (i) had not yet developed wings (and moved 162 

via cilia), (ii) were winged but not actively swimming within one hour of collection or (iii) 163 

did not have fully translucent shells, were rinsed with pH-buffed de-ionised water to induce 164 

mortality. Of these non-living specimens, all specimens within categories (i) and (ii) as well 165 

as a representative selection of category (iii) were preserved by air drying and stored in 166 

individual wells within specimen slides. 167 

Pteropod incubation 168 

Actively swimming juvenile specimens which appeared to have fully-translucent and intact 169 

shells were acclimatised to laboratory conditions in ambient seawater for about 4 hours as the 170 

incubation bottles were prepared. Five specimens were then randomly distributed into each of 171 

the three pre-prepared Duran bottles (see above). Six of the winged-specimens with fully 172 

translucent shells in which mortality was induced within one hour of collection were also 173 

incubated in ambient conditions and under elevated levels of pCO2 and were treated in an 174 

identical way to the actively swimming specimens to provide a control. These non-living 175 

specimens were divided between an additional three incubation bottles, two specimens per 176 

bottle. 177 

Incubation bottles were stored in the dark within a cold room set to ~-1.5 ˚C, the same 178 

temperature as the ambient sea water within the mixed layer below the sea ice. During the 179 

incubation, bottles were inspected daily to ensure the living specimens were actively 180 

swimming. Each bottle was gently inverted, observed for several minutes and replaced.  181 
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At the end of the 4 day incubation, a subsample of water was collected from each 182 

manipulated bottle for TA and DIC to determine the true pCO2 values achieved by the 183 

manipulation and also to determine the saturation state with respect to aragonite, Ar. Care 184 

was taken not to collect any pteropods in this water sample and not to generate any bubbles 185 

during the transfer. 5 ml of this water was then removed from the sample, 250 l of mercuric 186 

chloride was added and the bottle was sealed prior to analysis. Following collection of the 187 

DIC and TA sample, water was gently decanted out of the Duran bottles into deep walled 188 

glass Petri dishes. Each full dish was inspected under the light microscope and pteropods 189 

were removed by gentle pipetting.  190 

Pteropod shell analysis 191 

Once all specimens were recovered from each treatment bottle, they were observed using an 192 

Olympus SZX16 with a mounted Canon D5 camera to document their vitality/mobility. All 193 

specimens were then individually rinsed in pH-buffered ultra-pure water three times before 194 

being placed in a specimen slide and air-dried. Once dried, specimens were photographed 195 

again under the light microscope onboard, prior to storage for transport within air-tight 196 

containers containing silica-gel sachets. 197 

Specimens were imaged under scanning electron microscope at the Natural History Museum, 198 

London. As the specimens were free of sea salts and dry, no preparation was required prior to 199 

imaging with a LEO 1455 variable pressure SEM. Higher magnification and resolution 200 

images were generated by use of the Ultra Plus SEM. Specimens were imaged without a 201 

coating using the Ultra Plus SEM, but the best images were generated by specimens coated in 202 

~10 nm of gold-palladium in a sputter-coater.  203 

 204 

RESULTS 205 

Water column chemistry  206 

Temperature, salinity and Ar as measured from CTD casts at each site (Table 1) are shown 207 

in Fig. 2. While the upper 200 m of the two open water sites in the Greenland Sea and the 208 

Barents Sea exhibit similar temperature and salinity profiles, typical of a well mixed upper 209 

water column, the Greenland Sea ice margin site exhibited strong thermo-halocline 210 
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stratification above 200 m. At the Greenland ice margin site, temperature decreased from 211 

~3°C, similar to the open ocean water sites to ~-1.6°C beneath the sea ice within the upper 212 

200 m. Freshening of the surface water column due to sea ice melt was also evident, with 213 

salinity falling below 33 within the upper 20 m. While Ar values at the Greenland Sea ice 214 

margin were the lowest measured within the scientific cruise (Tyrrell et al., this issue), Ar 215 

exceeded 1 at all three sites, meaning that the water column at each site was oversaturated 216 

with respect to aragonite at the time of measurement.  217 

Specimens recovered 218 

At the Greenland Sea ice margin, 56 specimens of L. helicina helicina were recovered in the 219 

two deployments of the Bongo net. Analysis of their maximum shell diameter identified two 220 

distinct cohorts of L. helicina helicina at the Greenland Sea ice margin (Fig 3). The smaller 221 

cohort had an average maximum shell diameter of 202 ± 35 m (n=20). These specimens 222 

were veligers that had developed one whorl (Fig. 4 V1 and V2) and were ciliated, having not 223 

yet developed wings. The larger cohort, consisting of juveniles, had an average maximum 224 

shell diameter of 1255 ± 146 m (n=36), and had typically developed 3-4 whorls (Fig. 4 J1-225 

J6). The juvenile specimens had also developed wings, were active swimmers, and were far 226 

more agile than the veligers.  227 

Further specimens of L. helicina helicina, including 20 adults with maximum shell 228 

diameters ranging in size from 4.8 to 8.2 mm, were recovered from the Greenland Sea and 229 

Barents Sea open water sites to the east on the 21
st
 and 23

rd
 of June 2015 (Fig. 1).  230 

Shell analysis 231 

On board, light microscope examination of specimens collected at the open water sites 232 

(Greenland Sea and Barents Sea) found all shells were fully translucent. Although evidence 233 

of fracture and regrowth was apparent in several shells recovered from both of these sites 234 

(Fig. 5), the shell on both sides of the fracture remained fully translucent. At the Greenland 235 

Sea ice margin, all veligers also exhibited fully-translucent shells (Fig. 4, V1-2), but juvenile 236 

specimens did not all present fully translucent shells (Fig. 4, J1-2) with 13 out of 36 juveniles 237 

exhibiting areas of shell that appeared opaque under light microscope (Fig. 4, J3-6). Three of 238 

these specimens presented deep damage to the shell surface (Fig. 4, J5- 6). Investigation of 239 
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areas which appeared to be opaque under light microscope with SEM revealed three types of 240 

shell damage. 241 

(i) Central whorls 242 

85% of the damaged juveniles recovered from the Greenland Sea ice margin exhibited 243 

damage to the central whorl. SEM analysis showed that the areas of opaque shell within the 244 

central whorl of J3 and J4 corresponded to regions of finely pitted surface texture through to 245 

fully exposed aragonite crystals (Fig. 6).  246 

(ii) Deep damage 247 

23% of the damaged juveniles recovered from the Greenland Sea ice margin exhibited deep 248 

damage to their shell, meaning that although the shell was not observed to be perforated, 249 

dissolution appeared to have removed at least one layer of aragonite. In the case of J5 (Fig. 7 250 

b-e) and J6 (Fig. 8 b-e), deeper damage to the shell was clearly identifiable under SEM with 251 

extensive exposure of multiple aragonite layers visible. The progressive exposure of 252 

numerous layers of aragonite was evident in both specimens to a depth that exceeded the 253 

thickness of the original shell (Fig. 7a). In each case the margin between the area of exposed 254 

aragonite and translucent, smooth shell was abrupt. The growth of the subsequent whorls can 255 

be seen to mould around the deep damage of inner whorls (Fig. 7e, Fig. 8c).  256 

(iii) Fracture zones 257 

62% of the damaged specimens removed from the Greenland Sea ice margin exhibited 258 

fracture zone damage. SEM analysis of opaque linear features extending across the whorls of 259 

J5 and J6 revealed dissolution of aragonite along a fracture of the original shell and 260 

subsequent growth of new shell (Fig. 7a, b, f, g, and Fig, 8a, b, e and f). With J5 it appears 261 

that dissolution at the fracture zone is restricted to the new shell (Fig. 7 f,g). Under high 262 

magnification using the Ultra Plus SEM, the area of exposed aragonite crystals on the new 263 

section of shell (closest to the fracture) clearly revealed a loose section of a filmy layer that 264 

appeared to extend across the new, fully opaque section of shell, but was not present over the 265 

area of exposed aragonite (Fig. 7g, h). On J6, the dissolution appeared to be concentrated on 266 

the old shell side of the fracture (Fig. 8 e, f). The uncoated specimens within the Ultra Plus 267 

SEM did not generate such crisp images as the coated specimens, but nonetheless a filmy 268 
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layer with perforations overlaying what appear to be vertically stacked, partially eroded 269 

aragonite crystals can be seen (Fig. 8f).  270 

Incubations 271 

Actively swimming specimens of L. helicina with fully translucent shells collected from the 272 

Greenland Sea ice margin on June 18
th

 2012 were incubated for 4 days under the treatments 273 

shown in Table 2.   274 

Although the simulated pCO2 manipulations did not achieve their target values, both sets of 275 

treatments (650 atm and 800 atm) resulted in conditions undersaturated with respect to 276 

aragonite, with Ar values of 0.76 and 0.63 respectively. After four days of incubation, there 277 

were no fatalities in any of the treatments.  278 

Inspection of the shells at the end of the incubation revealed that all shells within the ambient 279 

treatment (n=5) remained fully translucent (Fig 9a). At the end of the incubations in which 280 

pCO2 was elevated, opaque regions to the shell had developed in 2 of the 5 specimens at a 281 

target pCO2 of 650 atm (Fig. 9b), and 3 of the 5 specimens at a target pCO2 of 800 atm 282 

(Fig. 9c). These opaque areas were superficial, compared to the damage observed in the 13 283 

non-pristine specimens recovered from the Greenland Sea ice margin.  284 

The shells of non-living specimens that were incubated with ambient water and at a target 285 

pCO2 of 650 atm (Fig. 9d and e respectively) for 4 days became uniformly opaque.  286 

 287 

DISCUSSION 288 

We observed naturally occurring dissolution to the juvenile shells of L. helicina helicina 289 

recovered at the Greenland Sea ice margin. It is evident that shell dissolution is exclusively 290 

associated with areas where damage to the protective periostracal sheet has been sustaining 291 

during the animal’s life.  Some areas of damage extend deeper than the original thickness of 292 

the shell, indicating that the animals respond to shell damage by secreting aragonite internally 293 

to maintain their shells. Where the periostracum remained fully intact, the shell appears 294 

pristine (fully translucent) with no sign of dissolution. Recently acquired periostracal damage 295 

associated with collection, becomes evident by the early stages of shell dissolution after four 296 

days of incubation, but only in waters Ar <1.  297 
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As is typical of the sampling protocol used in these studies, we acknowledge that our sample 298 

size, n=56 at the Greenland Sea ice margin, is not ideal, but exceeds the statistical minimum. 299 

Furthermore, the number of specimens analysed in this study considerably exceeds those of 300 

Bednarsek et al. 2012c (n = 3 to 20) and Bednarsek et al. 2014b (n=10).  301 

Our study confirms that pteropods are protected from natural dissolution by their 302 

periostracum in the same way that other shelled molluscs are, and that their shells only 303 

become vulnerable when the periostracal cover is breached.  We now consider how these 304 

patterns of dissolution relate to the life-history of L. helicina helicina and the likely causes of 305 

periostracum damage and subsequent shell dissolution in their natural environment. 306 

 307 

Population dynamics 308 

Since shell damage and dissolution were only observed in the juvenile specimens of L. 309 

helicina helicina we first of all consider the life stages represented by the two cohorts. Two 310 

modal peaks in maximum shell diameter, 200 m and 1380 m, were observed within L. 311 

helicina helicina collected at the Greenland Sea ice margin. We consider the smaller, ciliated 312 

specimens to represent veligers of the 2012 recruitment (Fig. 2, V1-2), likely spawned in the 313 

spring, and the larger winged specimens to represent juveniles that overwintered from the 314 

2011 recruitment (Fig. 2, J1-J6), fitting the ontogenetic-size classifications of Lalli & Wells 315 

(1978).  316 

Shell growth and protection. 317 

Although it is very thin, our results indicate that the pteropod periostracum, when intact, 318 

protects the underlying aragonite from dissolution by shielding it from exposure to sea water. 319 

However, should the periostracum of a pteropod become perforated, the shell beneath will 320 

become exposed and susceptible to dissolution if the environment is undersaturated with 321 

respect to carbonate. This scenario is evidenced by our observations following the 4 day 322 

incubation of shells that were pristine prior to incubation. At the end of the incubation, 50 % 323 

of the specimens incubated at Ar <1 exhibited surface scarring under light microscope (Fig. 324 

9 b, c) that was localised exclusively to obvious scratch-like marking. All specimens 325 

incubated within ambient waters appeared pristine (Fig. 9a). The absence of scratches on any 326 

of the specimens incubated within ambient waters (Ar =1.32) indicates that either none of 327 
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the specimens in this treatment received scratches during collection, or they were scratched 328 

but no dissolution occurred since the water was oversaturated with respect to aragonite. We 329 

consider it unlikely that none of the 5 specimens incubated in ambient waters received any 330 

superficial damage to their periostracum and therefore conclude that our incubation results 331 

indicate that dissolution of the shell will only be observed under the following circumstances. 332 

Firstly, dissolution will only occur localised to sites where the protective seal of the 333 

periostracum is broken and aragonite and waters are in direct contact. Secondly, exposed 334 

aragonite will only dissolve, and allow the scarring to become visible, when the shell is 335 

exposed to undersaturated waters. Damage to the periostracum and exposure to 336 

undersaturated waters are both necessary for shell dissolution in L. helicina helicina to occur. 337 

Considering these two contributing factors we now consider our observations of living 338 

specimens of L. helicina helicina recovered from the Greenland Sea ice margin in the context 339 

of 1. how the periostracum may have become damaged and 2. where and when the juvenile 340 

specimens became exposed to undersaturated waters.  341 

Damage to the periostracum 342 

Looking first at all at the pattern and distribution of dissolution exhibited on shells of L. 343 

helicina helicina we consider the following hypotheses for how the perisotracum may have 344 

become compromised. 345 

(i) Central whorl damage  346 

The periostracum of the initial whorl/protoconch appears to have been particularly 347 

susceptible to damage. The pitted texture observed in the centre of J3-6 does not exhibit any 348 

particular pattern indicative of mechanical damage. Being the oldest part of shell, it has been 349 

exposed to abrasion and/or microbial erosion for the longest time and is therefore more prone 350 

to loss or damage. It is also worth noting that although the mineralogy of Limacina  351 

protoconchs have not been studied, those of some other gastropods have been shown to 352 

include Amorphous Calcium Carbonate (Auzoux-Bordenave et al. 2010; Auzoux-Bordenave 353 

et al. 2015) which is more unstable than aragonite and may be particularly prone to 354 

dissolution. Mussel shells grown within waters of pH = 7.2 also exhibited a similar pattern of 355 

shell damage whereby dissolution only occurred where the periostracum at the umbo, the 356 
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oldest part of the shell, had been abraded owing to adjacent mussels rubbing together 357 

(Rodolpho-Metalpa et al., 2011). 358 

(i)   Deep damage  359 

Exposure of multiple layers of aragonite crystals appears within the 2
nd

 and 3
rd

 whorls of 360 

specimens J5 and J6. The original cause of the breach to the periostracum may be mechanical 361 

or through erosion of the periostracum by epibiont activity. However, in the case of J6, linear 362 

features to the areas of deep damage suggest a mechanical origin. 363 

While the animal can generate aragonite internally to patch up areas of shell damage 364 

(McMahon and Bogan, 2001), it cannot repair damage to the periostracum (Saleuddin & Petit 365 

1983) and the exposed aragonite beneath will always be susceptible to dissolution if Ar falls 366 

below 1. The exposure of multiple layers of aragonite, exceeding the thickness of the original 367 

shell, suggests that the animals repaired their shells internally by patching up areas of deep 368 

damage with new aragonite secreted on the inner wall of the shell. Again, since the pteropod 369 

is unable to replace the periostracum and protect the newly precipitated aragonite, this area of 370 

repair will continue to be dissolved from the outside so long as it is exposed to undersaturated 371 

waters. In this way the areas of deep damage we observe can significantly exceed the 372 

thickness of the original shell. Internal repair of this type is frequently observed in other 373 

molluscs, such as Harper et al. (2012). Knowing the linear extension rate of L. helicina 374 

helicina would allow the depth of the moulding of the subsequent whorls around deep 375 

damage of an inner whorl to determine the rate of dissolution of the exposed shell. 376 

 377 

(ii)    Fracture zones  378 

Only 2% of the sub-Antarctic population of L. helicina antarctica survive the first year 379 

(Bednarsek et al., 2012c), presumably, largely due to predation. While larger predators such 380 

as fish will eat the entire animal, a principal predator of L. helicina, is the non-shelled 381 

(gymnosomatus) pteropod Clione limacina, which will attach itself to the prey’s shell and 382 

extract the animal from within (Lalli & Gilmer, 1989). In a bid to protect itself, L. helicina 383 

will retract within its shell but, in doing so, risks damage to the most newly formed, outer 384 

edge of its shell during failed predation attempts. The distinctive fracture zones reported here 385 

are indicative of the shell aperture having been broken at some point in the past and 386 
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subsequently repaired and are similar to failed predation scars found on other gastropods 387 

(Alexander & Dietl, 2003). Scratch-like markings perpendicular to the fracture line, 388 

frequently observed on specimens recovered from the Greenland Sea ice margin (Fig 10) may 389 

indicate C. limacina predation attempts. The damage caused to L. helicina during such 390 

predation attempts appears to be readily recoverable and subsequent regrowth of new 391 

‘pristine’ shell from broken apertures is commonly observed (Fig. 5, 7, 8, 10; Lischka & 392 

Riebesell, 2012; Comeau et al., 2012; Bednarsek et al., 2012a [supplementary Fig. 2]). While 393 

in the ciliated, veliger stage, the animal is less agile and it is likely that predation attempts at 394 

this stage are highly successful which explains why none of the veligers showed failed 395 

predation damage. Animals that survive this first season to become fully-winged juveniles 396 

become better able to evade predation attempts. What is unique to the specimens collected in 397 

the Greenland Sea ice margin is frequent occurrence of dissolution localised to fractures and 398 

surface damage. The suture between the damaged shell and regrowth appears to be 399 

particularly prone to dissolution. SEM images (Fig. 7 and 8) suggest that the incomplete 400 

merger of old fractured periostracum and new periostracum grown at the aperture edge may 401 

allow a thin band of aragonite to become exposed and dissolved in when undersaturated 402 

waters, which can undermine the periostracum adjacent to the breach. Animals that survive 403 

the first year will carry the scars of predatory damage into later life. 404 

Exposure to understaturated waters 405 

At the time of collection, the entire depth of the water column at the Greenland Sea ice 406 

margin was over-saturated with respect to aragonite (Fig. 2). At these Ar values we would 407 

not expect to observe any signs of shell dissolution, as is the case at the open water sites in 408 

the Greenland and Barents Sea and the pristine specimens incubated in ambient waters from 409 

the Greenland Sea ice margin. Furthermore, the absence of any damage observed on the 410 

veligers, which were likely to have been spawned just weeks earlier, is consistent with them 411 

growing in supersaturated waters. However, the high incidence of shell damage to the 2011 412 

recruitment suggests that these specimens had been exposed to lower Ar at some point 413 

within the last year. In April 2010, Comeau et al. (2012) collected L. helicina helicina below 414 

first year sea ice in the Canadian Arctic. In this ~350 m water depth shelf setting, specimens 415 

were recovered from the upper 200 m of the water column where Ar was found to vary 416 

between 1.07 and 1.40. These Ar values are similar to measurements collected beneath sea 417 

ice in the Amundsen Gulf, Arctic Sea, in April 2008 (Fransson et al., 2013). Fransson et al. 418 
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(2013) observed the lowest Ar beneath Arctic sea ice water during April following the 419 

accumulation of CO2-enriched brines expulsed into sub-sea ice waters during sea ice 420 

formation through the winter months in addition to CO2 produced by the remineralisation of 421 

organic matter beneath the sea ice (Chierici et al., 2011). By May, the release of CO2-422 

depleted melt water and the onset of photosynthesis reduced dissolved CO2 concentrations in 423 

the mixed layer waters, thus increasing [CO3
2-

] and pH and seeing Ar reaching values of up 424 

to 2 (Fransson et al., 2013). Assuming similar processes control under sea ice waters within 425 

the Greenland Sea, we anticipate that Ar would have been lower during the winter months of 426 

2011/2012 than observed in June 2012 when sea ice melt was underway and phytoplankton 427 

production was well established. We illustrate our proposed life history, including failed 428 

predation, shell repair and regrowth and subsequent dissolution in undersaturated waters over 429 

winter in Figure 11.  430 

Dead animal shell dissolution 431 

We observed that the shells of dead specimens dissolved uniformly (cf. Gerdherdt & Henrich, 432 

2001). We propose that the shells of dead specimens, with a fully intact periostracum, 433 

dissolve from the inside (cf. Tunnicliffe et al., 2009). Degradation of the animal’s body 434 

would lower the saturation state internally, so regardless of the saturation state of the 435 

surrounding water, the shell is vulnerable to dissolution once the animal is dead. This may 436 

account for the sparse occurrence of pteropods within seafloor sediments, even those above 437 

the lysocline (Hunt et al., 2008). 438 

Effect of dissolution on animal health 439 

Regrowth and internal repair of the shell demonstrates the ability of L. helicina helicina to 440 

maintain shell integrity following trauma. In fact the animals that exhibited extensive areas of 441 

deep dissolution were not markedly smaller than those with pristine shells. However, energy 442 

required to repair the shell from the inside may have a somatic or reproductive cost. This is 443 

seen in other species of mollusc exposed to elevated pCO2 conditions (Wood et al., 2008; 444 

2010) 445 

Removal of periostracum prior to visual inspection 446 

Our observation of discrete regions of shell dissolution, localised to areas of periostracum 447 

damage is consistent with observations on larger mollusc shells (Tunnicliffe et al., 2009; 448 
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Rodolfa-Metalpa et al., 2011; Garilli et al., 2015), but contrary to the findings of Bednarsek et 449 

al. (2012a) who report dissolution over the entirety of L. helicina antarctica shells in a region 450 

of upwelling in the Southern Ocean. Bednarsek et al. (2012a) noted that the dissolution 451 

response they report is similar to that of dead animals incubated at Ar =1 (Byrne et al., 1984; 452 

Feely et al., 1988) and claimed that this was evidence that pteropods ‘have little to protect 453 

themselves from Ar under-saturation’. Our study, however, raises concerns about the 454 

preparation methods used in studies of live-collected material. As previously demonstrated by 455 

Lischka et al. (2011), Lischka & Riebesell (2012a), and Comeau et al. (2012), we show that 456 

dissolution of pteropod shells is readily evident under light microscope. The use of SEM 457 

images provides context to the nature and pattern of the dissolution. Bednarsek et al. (2012a) 458 

do not provide any light microscope images and use an extensive method to prepare 459 

specimens for SEM analysis (detailed in Bednarsek et al., 2012b) meaning it has not been 460 

possible to directly compare our observations. Furthermore, since these are two subspecies, 461 

identical treatment of samples would be necessary to ensure any species-specific responses 462 

are accurately observed. We therefore highlight the need for uniformity of approach, also for 463 

techniques to be employed that do not involve chemical reaction or plasma etching with the 464 

outer shell layers. Wholesale removal of the periostracum inhibits recognition between 465 

dissolution which has occurred to the living specimen due to natural damage to the 466 

periostracum, as opposed to ‘bleaching’ of shells prior to analysis which can cause post-467 

mortem damage to the crystalline fabric of the shells. The latter is particularly important as it 468 

is well known that shell microstructures contain both inter and intracrystalline organic matrix 469 

(Marin et al 1996), the selective removal of which may produce a corroded appearance (see 470 

Peck et al., 2015) which may be misinterpreted. We encourage the development of protocols 471 

that allow for dissolution to be documented and quantified using minimal preparation, in 472 

particular avoiding chemical treatment of the shell surface. 473 

Conclusions 474 

For molluscs (Tunnicliffe et al., 2009) and other genera (Rodolfo-Metalpa. et al., 2011; Ries 475 

et al., 2009) living in under-saturated waters, the periostracum, an organic external layer 476 

provides a vital means of protecting the shells and exoskeletons from dissolution and 477 

therefore ensuring the vitality of the animal. The effectiveness of the periostracum to 478 

pteropods however has been brought into question in recent years (Bednarsek et al., 2012a; 479 

Bednarsek et al., 2014a). We demonstrate that, in L. helicina helicina, shell dissolution can 480 
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occur where the periostracum has been breached. Where the periostracum has remained intact 481 

however, the shell appears pristine with no sign of dissolution, even when exposed to Ar ≤1. 482 

Since the periostracum appears to offer such effective protection of the shell we propose that 483 

the extent of shell dissolution is not a direct function of exposure to undersatutrated waters, 484 

rather it is dependent on the extent of periostracal damage and exposure to undersaturated 485 

waters. In addition to being able to protect their shells from whole scale dissolution, where 486 

localised dissolution has occurred due to trauma to the periostracum the shell may become 487 

thicker than the original shell, indicating that the animal is able to secrete layers of aragonite 488 

internally to patch up localised damage. Furthermore, our observations support rinsing and 489 

drying specimens on collection to enable shell damage to be identified with light microscopy 490 

(Lischka et al., 2011), and we caution against the use of chemical or laser etching of the 491 

periostracum before visual analysis.  492 

While we propose that L. helicina helicina are perhaps not as vulnerable to ocean 493 

acidification as previously claimed, at least not from direct shell dissolution, we have not 494 

assessed the energetic consequences of calcifying a shell in under saturated waters and 495 

repairing and maintaining a damaged shell within waters of Ar≤1. Further investigation into 496 

the long term reproductive and somatic consequences of ocean acidification are needed. 497 
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 641 

Figure captions 642 

Figure 1. Location of the three sites referred to in this study and sea ice coverage on 643 

June 18
th

 2012. Greenland Sea ice margin site, orange; Greenland open water site, dark blue; 644 

Barents Sea site, light blue.  645 

Figure 2. Water column profiles of temperature, salinity and Ar at the three sites 646 

referred to in this study. A. Temperature, B. Salinity, C. Ar. Greenland Sea ice margin site, 647 

orange; Greenland open water site, dark blue; Barents Sea site, light blue. Dotted line at 200 648 

m indicated the depth from which the Bongo next was vertically hauled.  649 

Figure 3. Maximum shell diameter distribution of L. helicina helicina specimens 650 

recovered from the Greenland Sea ice margin. Two distinct cohorts of ciliated veligers and 651 

winged juveniles were observed. 652 

Figure 4. Light microscope images of examples of L. helicina helicina collected at the 653 

Greenland Sea ice margin. V1-2 are veligers from the 2012 recruitment (scale bars 100 654 

m).  J1-6 juveniles from the 2011 recruitment (scale bars 250 m). J1-2, exhibit fully 655 

translucent/pristine shells. J3-4, exhibit some areas of opaque shell, but no deep damage. J5-656 

6, exhibit areas of opaque shell with some deep damage. 657 

Figure 5. Light microscope images of examples of L. helicina helicina from the open 658 

water sites in the Greenland Sea and Barents Sea exhibiting fracture and repair but no 659 

areas of opaque shell. 660 

Figure 6. Light microscope and SEM images of J3 (a, b, c; LEO) and J4 (d, e, f; Ultra 661 

Plus [uncoated]).  662 

Figure 7. Light microscope and Ultra Plus (coated) SEM images of J5. C-E, focus on an 663 

area of deep damage in the third whorl. In C and E note how the fourth whorl moulds around 664 

the deep damage of the third whorl. In D note how multiple layers of aragonite have been 665 

exposed and how deep damage exceeds the depth of the original shell, B. F, G and H focus 666 

on a fracture in the third whorl. F shows a neat suture between old shell, below the fracture, 667 
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and new shell above. Moving along the fracture, G, aragonite crystals become exposed where 668 

the suture between the periostracum of the old and new shell was not adequate to protect the 669 

shell beneath and dissolution has occurred. The area circled in G is shown in H. A piece of 670 

periostracum that has become loose as under-saturated waters have undermined the 671 

periostracum from the suture and dissolved the shell from beneath it.  672 

Figure 8. Light microscope and Ultra Plus (uncoated) SEM images of J6. C and D focus 673 

on areas of deep damage in the third whorl. Note that multiple layers of aragonite are exposed 674 

and how the fourth whorl moulds around the deep damage of the third whorl. E and F focus 675 

on a fracture in the third whorl. Notice how the old shell, above the fracture (F) presents a 676 

pitted appearance, suggesting that the periostracum and outer aragonite layer is compromised, 677 

while the new shell, below the fracture, appears pristine.  678 

Figure 9. Light microscope images of pristine specimens collected from the Greenland 679 

Sea ice margin after 4 day incubation. A, B and C were pristine, actively swimming 680 

specimens incubated at A. Ambient, B. 650 atm target pCO2 and C. 800 atm target pCO2. 681 

A remained fully translucent superficial scratch marks appear after living specimens with 682 

pristine shells incubated in undersaturated waters, B and C.  Non-living specimens incubated 683 

in ambient waters, D and at 650 atm target pCO2, E both exhibited uniform dissolution 684 

across the entire shell, but the sheen of periostracum can still be seen externally, indicating 685 

that the shell is dissolving internally. 686 

Figure 10. SEM images showing scratches indicative of failed predation attempts. 687 

Scratches were observed on J4, J5 and J6, from the Greenland Sea ice margin and also 688 

one specimen collected from the Greenland Sea open water site, D. 689 

Figure 11. Schematic showing possible history of damage and exposure to 690 

undersaturated waters of the 2011 recruitment, collected on June 18
th

 2012 as juveniles. 691 

 692 

 693 

 694 

 695 
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 696 

Table 1. Location and dates of sites discussed in this study. 697 

Date Location Lat Long 

18
th

 June 2012 Greenland Sea ice margin (sea ice) 78.16 -4.18 

21
st
 June 2012 Greenland Sea (open water) 77.93 9.14 

23
rd

 June 2012 Barents Sea (open water) 74.09 26.00 

 698 

 699 

Table 2. Incubation of pristine juvenile specimens collected within Greenland Sea ice. 700 

Target pCO2 Salinity TA Temp DIC pCO2 Ar

ambient 32.59 2229.3 -1.58 2120.9 344.7 1.32 

650 32.59 2241.8 -1.58 2154.7 657.4 0.76 

800 32.59 2231.3 -1.58 2198.1 810.3 0.63 

 701 
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