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Abstract 1 

The purpose of this study is to evaluate 10 process-based terrestrial biosphere models that 2 

were used for the IPCC 5th Assessment Report. The simulated distribution of gross primary 3 

productivity (GPP) is compared with gridded estimates established from a data-driven model 4 

based upon flux-tower measurements by Jung et al. (2011) (JU11). The net primary 5 

productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is 6 

diagnosed from each model output, using statistical functions. The temperature sensitivity is 7 

compared against independent ecosystem field warming experiments results. The CO2 8 

sensitivity of NPP is compared to the results from four Free Air CO2 Enrichment (FACE) 9 

experiments. The simulated global net biome productivity (NBP) is compared with the 10 

residual land sink (RLS) of the global carbon budget from Friedlingstein et al. (2010) (FR10). 11 

We found that models produce a higher GPP (133±15 Pg C yr-1) than JU11 (118±6 Pg C yr-1). 12 

In response to rising atmospheric CO2 concentration, modelled NPP increases on average by 13 

16% (5-20%) per 100 ppm, a slightly larger apparent sensitivity of NPP to CO2 than that 14 

measured at the FACE experiment locations (13 % per 100 ppm). Global NBP differs 15 

markedly among individual models, although the mean value of 2.0±0.8 Pg C yr-1 is 16 

remarkably close to the mean value of RLS (2.1±1.2 Pg C yr-1). The interannual variability of 17 

modelled NBP is significantly correlated with that of RLS for the period 1980-2009. The 18 

average linear regression slope of global NBP vs. Mean Annual Temperature (MAT) across 19 

the 10 models is -3.0±1.5 Pg C yr-1 oC-1. Yet, 9 of 10 models overestimate the regression slope 20 

of NBP vs. precipitation, compared to the slope of the observed RLS vs. precipitation. With 21 

most models lacking processes that control GPP and NBP in addition to CO2 and climate, 22 

such as N-deposition, forest regrowth, changes in the diffuse component of radiation, the 23 

agreement between modelled and observation-based GPP and NBP can be fortuitous. 24 

Carbon-nitrogen interactions (only separable in one model) significantly influence the 25 

simulated response of GPP and NBP to temperature and atmospheric CO2 concentration, 26 

suggesting that nutrients limitations should be included in the next generation of terrestrial 27 

biosphere models.  28 

 29 

30 
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1. Introduction 1 

The human caused perturbation of the carbon cycle controls climate change, directly 2 

through emissions but also via climate feedbacks on natural carbon sources and sinks. The 3 

terrestrial carbon cycle has been modeled to be particularly sensitive to current and future 4 

climate and atmospheric CO2 changes, but regional patterns and mechanisms of terrestrial 5 

carbon sources and sinks remain uncertain (Schimel et al., 2001; Houghton, 2007). During the 6 

past decades, considerable efforts have been made to develop process-based carbon cycle 7 

models, as tools to understand terrestrial carbon mechanisms and fluxes at local, regional, 8 

continental and global scales (Moorcroft et al., 2006; Huntingford et al., 2011). Models were 9 

applied to hindcast historical changes (Cramer et al., 2001; Piao et al. 2009), and to forecast 10 

future changes (Friedlingstein et al., 2006; Sitch et al; 2008). Although carbon cycle models 11 

have been tested against CO2 fluxes measured by eddy-covariance technique at sites around 12 

the world (Sitch et al., 2003; Krinner et al., 2005; Jung et al., 2007; Stockli et al. 2008; Wang 13 

et al. 2012; Keenan et al. 2012), satellite based leaf area index (LAI) retrieval products (Lucht 14 

et al., 2002; Piao et al., 2006, 2008), and observed vegetation productivity and carbon storage 15 

(Randerson et al., 2009), it is difficult to draw a clear picture of model performance and 16 

shortcomings from the current model-benchmarking literature dealing with the global 17 

terrestrial carbon cycle. The reasons for this are several: 1) in situ high-quality measurements 18 

are very sparse, and often cannot be extrapolated readily to larger spatial scales, 2) satellite 19 

measurements provide only indirect proxies of carbon variables, 3) atmospheric CO2 20 

evaluates the combination of a terrestrial carbon model, atmospheric transport model and 21 

potentially ocean carbon models, and as such the results thus depend on the choice of the 22 

atmospheric transport model and its bias (Stephens et al. 2007), 4) uncertainties associated 23 

with measurements are often not reported, which generates type-1 error (a model is estimated 24 

to be realistic but the benchmark measurement is not accurate enough to say this) and type-2 25 

error (a model is estimated to be erroneous, whereas the benchmark data is biased), and 5) 26 

several recent studies have documented prototype benchmark schemes for the carbon cycle 27 

(Randerson et al., 2009, Cadule et al., 2010; Blyth et al., 2011), however, a community-wide 28 

set of agreed benchmark tests and performance indicators is currently still under development.  29 

 30 
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Current coupled-climate-carbon models used in the 4th and 5th Assessment Reports of 1 

IPCC generally project a positive feedback between global warming and the reduction of 2 

terrestrial carbon sinks in the 21st century (Denman et al., 2007). In some instances, these 3 

feedbacks become stronger over time than the CO2-induced fertilization and hence the land 4 

surface has the potential to eventually become an overall source (Cox et al., 2000). 5 

Characterizing this feedback has important implications for mitigation policies designed to 6 

stabilize greenhouse gas levels (Matthews, 2005). The magnitude of this positive feedback 7 

varies markedly among models (Friedlingstein et al., 2006). For the SRES-A2 CO2 emission 8 

scenario, by 2100 the modelled climate-carbon cycle feedback is estimated to cause an 9 

additional increase in CO2 content of between 20 ppmv to 200 ppmv, which corresponds to an 10 

additional global temperature increase of 0.1◦C–1.5◦C (Friedlingstein et al., 2006). This large 11 

uncertainty in carbon-climate feedbacks is associated with the different sensitivities of 12 

simulated terrestrial carbon cycle processes to changes in climate and atmospheric CO2 13 

(Friedlingstein et al., 2006; Huntingford et al., 2009). Other important processes, such as 14 

nutrient constraints, may further affect terrestrial carbon climate interactions (Arneth et al. 15 

2010, Zaehle & Dalmonech, 2011).  16 

 17 

In this study, a set of ten process-based models is tested for their ability to predict current 18 

global carbon fluxes (GPP, NPP & NBP) and their sensitivity to climate variability and rising 19 

atmospheric CO2 concentration. The model ensemble includes: HyLand (Levy et al., 2004), 20 

Lund-Potsdam-Jena DGVM (Sitch et al., 2003), ORCHIDEE (Krinner et al., 2005), 21 

Sheffield–DGVM (Woodward et al., 1995; Woodward and Lomas, 2004), TRIFFID (Cox, 22 

2001), LPJ-GUESS (Smith et al., 2001), NCAR_CLM4C (Oleson et al., 2010; Lawrence et al., 23 

2011), NCAR_CLM4CN (Oleson et al., 2010; Lawrence et al., 2011), OCN (Zaehle & Friend, 24 

2010), and VEGAS (Zeng et al., 2005). We compare the model output of NBP with the RLS 25 

from Friedlingstein et al. (2010) (hereafter FR10). For global climatological GPP we compare 26 

model results with those from Jung et al. (2011) (hereafter JU11), which is based on the 27 

global interpolation of flux tower observations using a model tree ensemble (MTE) regression 28 

approach trained with satellite FAPAR and climate fields. Finally, ecosystem controlled 29 

warming experiments (six sites) and Free Air CO2 Enrichment (FACE) experiments (four 30 
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sites) are used to test the models’ sensitivity of NPP to individual changes in temperature and 1 

CO2.  2 

 3 

2. Methods 4 

2.1 Terrestrial carbon cycle models 5 

The 10 carbon cycle models used in this study are briefly described in the Table S1. All 6 

models describe surface fluxes of CO2, water and the dynamics of water and carbon pools in 7 

response to change in climate and atmospheric composition. However, the formulation and 8 

number of processes primarily responsible for carbon and water exchange differs among 9 

models.  10 

Two simulations, S1 and S2, were performed over the period 1860-2009. In S1, models 11 

were forced with rising atmospheric CO2 concentration, while climate was held constant 12 

(recycling climate mean and variability from the early decades of the 20th century, e.g. 13 

1901-1920). In S2, models were forced with reconstructed historical climate fields and rising 14 

atmospheric CO2 concentration. All models used the same forcing files, of which historical 15 

climate fields were from CRU-NCEP v4 dataset 16 

(http://dods.extra.cea.fr/data/p529viov/cruncep/) and global atmospheric CO2 concentration 17 

were from the combination of ice core records and atmospheric observations (Keeling & 18 

Whorf, 2005 and update). Details of the simulation settings are described in Sitch et al. 19 

(submitted). It should be noted that land use change was not taken into account in S1 and S2. 20 

 21 

2.2 Data-oriented global estimation of GPP 22 

Direct observation of Gross Primary Production (GPP) at the global scale does not exist. 23 

Thus, we used a GPP gridded data product from a Multiple Tree Ensemble (MTE) model-data 24 

fusion scheme involving eddy covariance flux tower data, climate, and satellite FAPAR fields 25 

(Jung et al., 2011 for description of the method), available during 1982-2008, to compare with 26 

model output. In the MTE method employed by JU11, a set of regression trees were trained 27 

with local GPP estimation from eddy flux NEE measurements with the Lasslop et al. (2010) 28 

method used to separate GPP, and 29 candidate predictor climate and biophysical variables, 29 

including vegetation types, observed temperature, precipitation and radiation, and satellite 30 
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derived fraction of absorbed photosynthetic active radiation (FAPAR). The ensemble of the 1 

trained regression trees was driven by global fields of predictor variables to derive gridded 2 

GPP estimates (Beer et al., 2010). Uncertainty of the GPP estimated from MTE is relatively 3 

small, at about ± 6 Pg C yr-1 (Jung et al., 2011). However, this does not consider other sources 4 

of uncertainty such as measurement uncertainties of eddy covariance fluxes, of global 5 

predictor variables as well as sampling bias driven by unevenly distributed eddy covariance 6 

flux sites, with many sites in temperate regions and very few sites in the tropics. As described 7 

further below, this dataset should also be used with extreme caution for assessment of 8 

interannual variability of GPP. 9 

 10 

2.3 The ‘residual’ land sink (RLS) 11 

The RLS of anthropogenic CO2 during the period 1980-2009 is taken from the Global 12 

Carbon Project carbon budget from Friedlingstein et al. (2010) and Le Quéré et al.(2009). It is 13 

estimated as a residual of all other terms that compose the global carbon budget, since no 14 

direct global observation of land carbon balance is otherwise available, except for the global 15 

forest sink (Pan et al., 2011). The RLS is the sum of fossil fuel and cement emissions and land 16 

use change emissions minus the sum of observed atmospheric CO2 growth rate and modeled 17 

ocean sink. The CO2 emissions from fossil fuel and cement are estimated based on statistics 18 

provided by United Nations Energy Statistics (Marland et al., 2005), British Petroleum 19 

statistic review of world energy 20 

(http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622), and USGS 21 

statistics on cement production (Van Oss, 2006). Emissions from land use change (Houghton, 22 

1999) are based on statistics published by the United Nations Food and Agriculture 23 

Organization and a book-keeping model (Houghton, 2010). Atmospheric annual CO2 growth 24 

rate is derived from the NOAA/ESRL global cooperative air-sampling network (Conway et al., 25 

1994). The ocean sink of anthropogenic CO2 is calculated from the average of four ocean 26 

carbon cycle models (Le Quéré et al., 2009). It is important to note that the net land use 27 

source estimate in FR10 is 0.3 Pg C yr-1 lower over 2000-2009 than the previous LUC 28 

emission estimate (Le Quéré et al., 2009). This lower estimate uses the same Houghton et al. 29 

model, but takes as input data updated information on forest area change from (FAO, TBRFA 30 
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2010) instead of the TBFRA 2005. A lower LUC emission estimate results in a lower RLS 1 

mean value. 2 

 3 

2.4 Field ecosystem warming experiment 4 

Data from a harmonized field warming experiment dataset compiled from 124 published 5 

papers (Lu et al., submitted) was used to evaluate model performance. In order to compare 6 

with model outputs, available observations of Net Primary Production (NPP) in experimental 7 

sites with warming only treatments and the control experiment were used in our study. The six 8 

available sites were located over the temperate and boreal northern hemisphere between 30oN 9 

- 70oN with mean annual temperature spanning from -7 oC to 16 oC and mean annual 10 

precipitation spanning from 320 mm to 818 mm (Table S2). The magnitude of experimental 11 

warming ranges from 1oC to 3.5 oC among different treatments and different sites. These 12 

levels of warming are of a magnitude equal or higher than inter-annual variability of 13 

temperature, and so complement comparison of simulations S2 and their testing against data, 14 

where for the latter an emphasis might be placed on anomalously warm years. It should be 15 

noted that total NPP (both aboveground and belowground NPP) were measured in four of the 16 

sites, while the other two sites (HARS and Toolik Lake) only measured aboveground NPP. 17 

 18 

2.5 Free Air Carbon Dioxide Enrichment (FACE) experiments 19 

Free Air Carbon Dioxide Enrichment (FACE) experiment provided field experimental 20 

data on the response of NPP to elevated CO2. Four FACE experiments in temperate forest 21 

stands provided data for our evaluation (Table S3). NPP was calculated as annual carbon 22 

increments in all plant parts plus the major inputs to detritus, litterfall, and fine root turnover. 23 

We used data from Norby et al. (2005), however data from the ORNL FACE site was 24 

corrected and extended to 2008 (Iversen et al., 2008). Data from young stands in the early 25 

stage of sapling development with expanding canopies, and some plots with increasing O3 at 26 

the ASPEN FACE were not included in the dataset, as described by Norby et al. (2005). There 27 

were in total 21 site-year NPP observations available for our study. Site characteristics and 28 

experiment settings in each stand can be found in Table S3, with a more detailed description 29 

given in Norby et al. (2005). There are no FACE experiments for tropical ecosystems. 30 
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 1 

2.6 Analysis 2 

2.6.1 Response of carbon fluxes to climate variations 3 

We estimate empirically the response of GPP, NPP and NBP to climate variability (MAT 4 

and annual precipitation) over the last three decades by using a multiple regression approach 5 

(Eq. 1):  6 

y ൌ γint xT ൅ δint xP ൅ ε ሺEq. 1ሻ 
 7 

where y is the detrended anomaly of the carbon fluxes GPP, NPP and NBP from the S2 8 

simulations (i.e. simulations considering change in both climate and atmospheric CO2 9 

concentration, see section 2.1) estimated by each model. Equation (1) is also fitted to the 10 

data-oriented model of GPP (JU11 GPP) and to the RLS values from FR10. The variable xT is 11 

the detrended MAT anomaly, and xP is the detrended annual precipitation anomaly. The fitted 12 

regression coefficients γint and δint define an apparent carbon flux sensitivity to interannual 13 

variations in temperature and precipitation, and ε the residual error term. Note that γint (or δint) 14 

reflect the contributive effect of temperature (or precipitation) variations on carbon fluxes, but 15 

not the ‘true’ sensitivities of these fluxes, given that: (1) temperature and precipitation co-vary 16 

over the time, and (2) other climate drivers discarded in Eq.1, such as solar radiation, 17 

humidity, and wind speed may also contribute to the variability of detrended carbon fluxes. 18 

The regression coefficients are calculated using maximum likelihood estimates (MLE). The 19 

uncertainty in γint and δint was estimated using the standard error of the corresponding 20 

regression coefficients. Data from 1980 to 2009 were used to quantify the response of carbon 21 

fluxes to climate variations, except for GPP where instead the period 1982-2008 was 22 

considered in order to be consistent with the period covered by the JU11 data-oriented 23 

estimate. In order to be consistent with RLS, we first aggregate each grid cell carbon flux into 24 

a global mean flux (see SI) and then remove the trend using a least squares linear fitting 25 

method.  26 

 27 

2.6.2 Response of carbon fluxes to CO2 trended over the past 30 years  28 

Two approaches were applied to estimate the response of carbon fluxes to CO2 (β). In the 29 
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first approach, β was estimated based on S1 simulations (i.e. the simulations that only 1 

consider change in atmospheric CO2 concentration) using Eq. (2):  2 

2CO

F




         (Eq. 2) 3 

where, △F is the difference of average carbon fluxes between the last and the first five 4 

years of the S1 simulation, while △CO2 is the corresponding change in atmospheric CO2 5 

concentration. In order to estimate the uncertainty of β, we also calculated the change in 6 

carbon fluxes and CO2 over the study period by randomly selecting a different year over the 7 

first and last five year period.  8 

 9 

In the second approach, we used a multiple regression approach (Eq. 3) to estimate β for 10 

RLS, or for JU11’s GPP, and for each model’s carbon flux from simulation S2 (both climate 11 

and CO2 change).  12 

y ൌ β	CO2 ൅ 	a Tmp൅ b Prcp ൅ c ൅ ε ሺEq. 3ሻ 

  13 

where, y is the carbon flux of each model from S2, or RLS from FR10, and CO2, Tmp, 14 

and Prcp are the atmospheric CO2 concentration, MAT and annual precipitation respectively. 15 

Quantities β, a, b, and c are regression coefficients, while ε is the residual error term. The 16 

regression coefficients are calculated using maximum likelihood estimates (MLE). Our Eq. 3 17 

attributes the time series of the y flux to what we consider as the dominant drivers of change 18 

i.e. temperature, precipitation, and CO2. However we do recognize that other land surface 19 

changes or meteorological forcing might influence too, and these become implicit in our 20 

regression co-efficients. Such effects are for example land use, forest demography, nitrogen 21 

deposition, solar radiation, humidity, and wind speed, which influence the trend of RLS time 22 

series. Therefore, although we believe rising CO2 to be strongly influencing the RLS trend the 23 

precise values of our regression co-efficients should be treated with caution. Generally, a and 24 

b indicate the contributive effect of temperature (resp. precipitation) variations on the carbon 25 

fluxes variations (Fig. S1). The period 1980-2009 is used to estimate the carbon fluxes 26 

sensitivities to climate and CO2, except for GPP where the period considered is 1982-2008.  27 

 28 
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2.6.3 Temperature sensitivities of vegetation productivity derived warming experiment 1 

For warming experiments, the sensitivity of NPP to an (generally stepwise) applied 2 

change in temperature, is estimated as the ratio of the relative difference between NPP in 3 

warmed minus control plots to the applied warming magnitude. The estimated temperature 4 

sensitivity at each experimental site is then compared with the ratio of int
NPP  estimated from 5 

model simulations and with the multiple regression method (Eq. 1). This corresponds to the 6 

30-year average NPP (hereafter int
NPPR ), and with models being sampled at the grid point 7 

containing the experimental site. In addition, we also extract modeled sensitivities in ‘climate 8 

neighbours’ grid points where the mean annual temperature differs by less than 1oC and mean 9 

annual precipitation by less than 50 mm from the conditions at each experimental site. Only 10 

neighbouring grid points with the same dominant vegetation cover as observed at each 11 

experimental site are retained, e.g. for grassland warming sites; all grid points with grassland 12 

cover of less than 50% are excluded. Since models do not explicitly represent wetland 13 

processes, we grouped wetland with grasslands. Using a similar approach, we estimated the 14 

sensitivities of NPP to rising atmospheric CO2 concentration from the FACE sites and the 15 

relative response of NPP to CO2 ( NPPR , the ratio of NPP estimated by Eq. 2 to the 30-year 16 

average NPP in each model).  17 

We note that due to this set-up, we cannot make quantitative statements about the nature 18 

of the model-data agreement. Both, the step-wise nature of the experiment and the magnitude 19 

of the perturbation may induce non-linear effects in the ecosystems that cannot (and should 20 

not) be reproduced by ecosystem models simulating the consequences of a gradual and less 21 

pronounced perturbation over the last three decades. In particular, because of the saturating 22 

effect of CO2 on leaf level photosynthesis, we expect to see a larger relative effect of CO2 on 23 

photosynthesis when evaluating the increase from 338 to 386 ppm than the response from 24 

field experiments elevating CO2 concentration from about 360 to 550 ppm. 25 

 26 

3. Vegetation productivity 27 

3.1 GPP estimation 28 

Global terrestrial GPP averaged across 10 models is 133±15 Pg C yr-1, ranging from 29 
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111±4 Pg C yr-1 (±s.d. of GPP over the three decades) in SDGVM to 151±4 Pg C yr-1 in 1 

ORCHIDEE and CLM4C. The higher estimates are consistent with the inferred estimate from 2 

18OCO in the atmosphere (Welp et al., 2011), although this high value is also uncertain and in 3 

contrast to earlier studies (Ciais et al., 1995, Beer et al. 2010). The JU11 GPP product derived 4 

from eddy-covariance flux towers, generally gives a lower estimate of GPP than the majority 5 

of the processed-based models (Fig. 1), particularly in temperate regions (Fig. S2b). At the 6 

global scale, the magnitude of GPP (113±3 Pg C yr-1) in LPJ-GUESS is close to JU11 (118±1 7 

Pg C yr-1). However, this result should be viewed with caution, since a similar global 8 

magnitude can mask compensation of biases between tropical and non-tropical regions. As 9 

shown in Fig. S2 and S3, the LPJ-GUESS simulation has a low bias of GPP in tropical 10 

regions compared to JU11 (68% of JU11), compensated by a high bias in non-tropical 11 

regions.  12 

 13 

At the global scale, the correlation of interannual GPP variations among the different 14 

models is much higher than that with JU11 as shown by Fig. 2a. JU11 GPP is estimated from 15 

satellite and eddy covariance flux tower measurements, and flux tower sites are mainly 16 

distributed in northern temperate regions (mainly forest). Hence a larger sampling uncertainty 17 

is associated with JU11 for GPP outside this northern region. This is of importance as tropical 18 

ecosystems are largely driving the interannual variability of the carbon cycle (Denman et al., 19 

2007). Interestingly, the lowest correlation between GPP from models and JU11 is found in 20 

tropical regions (Fig. S4c) perhaps due to fewer eddy-covariance flux sites available to create 21 

the interpolated global product. Furthermore, the standard deviation of GPP is found to be 22 

substantially higher in the 10 process models than in JU11 (compare error bars in Fig. 1a), and 23 

particularly over tropical regions (Fig. S2c). This leads us to make the hypothesis that the 24 

GPP interannual variability is under-sampled in JU11 and hence systematically lower than the 25 

interannual variability simulated by the DGVMs. This hypothesis is further discussed in the 26 

next section.  27 

 28 

3.2 Response of GPP to temperature variations ( int
GPP ) 29 
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At the global scale, the models suggest that interannual variation in global GPP is not 1 

significantly correlated with temperature (all variables detrended), as can be seen from the 2 

large differences in the magnitude and even in the sign of the int
GPP  (Fig. 3a) due to the 3 

different sensitivity values over different regions (Fig. S6). In the tropical regions, all models 4 

have a negative apparent sensitivity 
int
GPP  (-2.2±1.2 Pg C yr-1 oC-1 or -2.9±1.4 % oC-1; 5 

significant for 7 out of 10 models), while JU11 has a positive int
GPP  (0.4±0.7 Pg C yr-1 oC-1 or 6 

0.6±1.0 % oC-1, P>0.05) (Fig. S6c). JU11’s GPP response to temperature variability over 7 

tropical regions, however, may be considered as more uncertain than models, since satellite 8 

FAPAR used by JU11 for spatial-temporal interpolation of GPP distribution between flux 9 

tower locations is often contaminated by cloudiness (Myneni et al., 1997). Furthermore, JU11 10 

trained their MTE using spatial gradients among different sites (there are few long series) and 11 

then used the derived relationship to extrapolate to temporal interannual gradients. This 12 

assumes that spatial and interannual sensitivity of GPP to climate are the same, which may be 13 

not correct. Measurements of tree growth in tropical forests have shown negative correlation 14 

with temperature (Clark et al., 2003; Clark et al., 2008). This result is also supported by 15 

short-term leaf level measurements in tropical forests which indicate a decrease in net carbon 16 

assimilation at higher temperature (Tribuzy, 2005; Doughty and Goulden, 2008). This 17 

negative response of vegetation productivity to MAT variability may arise from the fact that 18 

tropical forests already operate near to a high temperature optimum threshold above which 19 

vegetation photosynthesis declines sharply (Corlett et al., 2011). 20 

 21 

In boreal regions, vegetation growth is limited by temperature which controls the length 22 

of the growing-season, implying that rising MAT causes an extension of the growing season, 23 

and induces an increase in GPP (Piao et al. 2007; Richardson et al., 2010). It has been 24 

suggested that rising temperature is enhancing vegetation growth in boreal regions (Lucht et 25 

al., 2002; Piao et al., 2006; Piao et al., 2009; Wang et al., 2011) except in regions affected by 26 

summer drought, during the analysis period, such as parts of Alaska (Beck et al., 2011). All 27 

the models show significant positive relationship (P<0.05) between boreal GPP and MAT with 28 
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an average int
GPP  of 0.8±0.3 Pg C yr-1 oC-1 (or 4.5±1.5 % oC-1), which is close to the int

GPP  1 

derived from the GPP of JU11 (0.9±0.3 Pg C yr-1 oC-1 or 4.7±1.5% oC-1) (Fig. S6a).  2 

 3 

In temperate regions, the response of GPP to MAT depends partly on the balance 4 

between the positive effect of warming through extending the growing season in spring and 5 

possibly in autumn (although recent work suggest that the photoperiod may limit GPP, 6 

Bauerle et al., 2012), reaching more optimal growing temperature, and the negative effect of 7 

warming through enhanced soil moisture stress in summer. At the regional scale, most models 8 

(except CLM4CN and HYLAND) and JU11 data-product show a non-significant interannual 9 

correlation between MAT and GPP (Fig. S6b).  10 

 11 

3.3 Comparison with the field warming experiments 12 

Fig. 4 shows the spatial distribution of the int
NPPR  (the ratio of int

NPP to the 30-years 13 

average NPP of each model) averaged across the 10 models. Similar to the regional scale 14 

analyses of int
GPP  above, we checked for a positive (resp. negative) interannual correlation 15 

between MAT and NPP in boreal (resp. tropical) regions. We then compared the simulated 16 

int
NPPR  against the relative sensitivity derived from field warming experiments, which are 17 

only distributed over the northern hemisphere. Field warming experiments show that rising 18 

temperature generally increases NPP (after 4 years of warming on average) across most sites, 19 

except at the Haibei Alpine Research Station (in the Tibet Plateau) where rising temperature 20 

significantly decreased aboveground NPP by -8% oC-1 (Fig. 4). The sign of this sensitivity in 21 

Haibei Alpine Research Station is correctly captured by six of ten models (Fig. 4). One can 22 

also see in Fig. 4 that models tend to predict smaller int
NPPR  values than observed at the 23 

warming experiment temperate sites, particularly at Jasper Ridge Global Change Experiment 24 

(JRGCE), Kessler’s Farm Field Laboratory (KFFL), Toivola and Alborn (Minnesota 2), and 25 

Duolun. One can assume that this may be because in the grid points containing these sites, 26 

annual precipitation used in model forcing is less than actual precipitation at field sites (by 27 

15% at Jasper Ridge Global Change Experiment, 8% at Kessler’s Farm Field Laboratory, 46% 28 
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at Toivola and Alborn, and 17% at Duolun). The results of two field warming experiment sites 1 

in Minnesota, USA (47°N, 92°W) have shown that the wetter site (annual precipitation of 762 2 

mm) has a much higher NPP sensitivity to warming (12 - 22 % oC-1 yr-1) than the drier site 3 

(annual precipitation of 497 mm, -3 - 6 % oC-1 yr-1) (Fig. 4), implying that average climatic 4 

conditions (in particular through soil moisture availability) regulate the response of NPP to 5 

temperature. To mini minimize the effect of biases in the climate drivers, we also extract 6 

modeled sensitivities in ‘climate neighbours’ grid points where the mean annual temperature 7 

differs by less than 1oC and mean annual precipitation by less than 50 mm from the conditions 8 

at each experimental site. As shown in Fig. 4, however, the model estimated  at JRGCE, 9 

KFFL, Minnesota 2, and Duolun, is still systematically lower than observation, implying that 10 

the different forcing may be not the primary reason the mismatch between models and 11 

observations. A recent study comparing model simulations driven by site-level climate forcing 12 

and by gridded climate forcing suggested that model structure, rather than climate forcing, 13 

remained the main limitation for improving model-site data comparison (Rackza et al., 14 

submitted).  15 

 16 

In addition, it should be noted that the methods we used to quantify the response of NPP 17 

to temperature change in models (interannual variability) and in field warming experiments 18 

(multi-years treatments have a higher amplitude of stepwise warming than the inter-annual 19 

range of natural variability, and no covariate precipitation change) are different, which may 20 

cause inconsistencies in evaluating models. Even at the same site, the magnitude of the 21 

temperature sensitivity of NPP depends upon the magnitude of warming. For example, field 22 

warming experiments at the drier site in Minnesota, USA (47°N, 92°W), show that 23 

temperature sensitivity of NPP for a step 2 oC warming (1 - 6% yr-1) is larger than that for a 24 

step 3 oC warming (-3 - 2% yr-1). Furthermore, int
NPPR  of processed-based models does not 25 

consider local heterogeneity of environmental conditions and land cover, and local 26 

biogeophysical feedbacks (e.g., Long et al. 2006). This spatial scale mismatch adds 27 

uncertainty to model evaluation using warming experiment sites. For instance, the 28 

temperature sensitivity of NPP derived from the warming experiment at the two Minnesota 29 
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sites (47°N, 92°W) that are located in the same grid point of models, varies from -3% oC-1 to 1 

22% oC-1, which is a larger range than that predicted by the models over the corresponding 2 

grid point (from -2.7% oC-1 to 6.1% oC-1). In addition, the models may not fully represent 3 

ecosystem-level mechanisms underlying NPP responses to warming in experiments, such as 4 

warming-induced changes in nutrient availability, soil moisture, phenology, and species 5 

composition (Luo, 2007). Overall, the inconsistency of the response of NPP to temperature 6 

change between models and field warming experiments should be addressed by further 7 

studies, for instance running the same models with site observed forcing data and vegetation, 8 

soil parameters.  9 

 10 

3.4 Response of GPP to precipitation variations ( int
GPP ) 11 

Over the past few decades, many regions have experienced drought, which has a 12 

negative effect on vegetation productivity (Zhao et al., 2010 for the globe; Angert et al., 2005 13 

and Zeng et al., 2005 for the Northern Hemisphere; Ciais et al., 2005 for Europe; Zhang et al., 14 

2010 for North America; Potter et al., 2011 for Amazonia, McGrath et al., 2012 for Australia, 15 

Wang et al., 2010 for China). Droughts that occurred from 1998 to 2002 in the northern 16 

hemisphere mid-latitudes, for example, led to an estimated reduction of vegetation NPP by 17 

5% compared to the average of the previous two decades (Zeng et al., 2005). Although 18 

individual drought events cannot be attributed to anthropogenically-induced climate change, 19 

there is a concern that a general situation of more extreme weather events is emerging, 20 

including the potential for alteration to the global hydrological cycle. Over the northern 21 

hemisphere, all models have a positive int
GPP . However the interannual correlation between 22 

GPP and precipitation was found not significant for JU11, HYLAND, LPJ-GUESS, and 23 

VEGAS in boreal regions (Fig. S7a), and JU11, HYLAND in northern temperate regions (Fig. 24 

S7b).  25 

 26 

There has been much discussion in the literature about the impact of drought on 27 

vegetation growth and mortality in tropical regions (Nepstad et al., 2004; Da Costa et al., 28 

2010; Phillips et al., 2009 and 2010). A rainfall exclusion experiment in an east-central 29 
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Amazonian rainforest at Tapajos showed that a 50% reduction in precipitation led to a 25% 1 

reduction in vegetation NPP over the first two years of the experiment (Nepstad et al., 2002). 2 

It has been suggested that spatial GPP variability in 30% of tropical forest and in 55% of 3 

tropical savannahs and grasslands is primary correlated with the precipitation (Beer et al., 4 

2010). Indeed, at the continental scale, all models show a positive correlation of GPP with 5 

annual precipitation over tropical regions (not significant in JU11 and HYLAND), but the 6 

magnitude of int
GPP  differs among models with TRIFFID and LPJ having the largest int

GPP  7 

(about 2.2±0.4 Pg C yr-1 per 100 mm or 2.8±0.5 % per 100 mm for TRIFFID, and 1.8±0.4 Pg 8 

C yr-1 per 100 mm or 2.7±0.5 % per 100 mm for LPJ) (Fig. S7c). The average of tropical 9 

int
GPP  across the 10 models is 1.4±0.5 Pg C yr-1 per 100 mm (or 1.8±0.7% per 100 mm), 10 

which is three times larger than int
GPP  of the JU11 data-oriented GPP (0.5±0.3 Pg C yr-1 per 11 

100 mm or 0.6±0.4 % per 100 mm).  12 

 13 

Overall, at the global scale, int
GPP  averaged across the 10 models is 4.1±2.0 Pg C yr-1 per 14 

100 mm (or 3.1±1.5% per 100 mm) (Fig. 3b). Among the 10 models, 8 exhibit significant 15 

correlations between global GPP and annual precipitation (all variables detrended). 16 

Considering that global GPP was not correlated with MAT in any of the models (see section 17 

3.2.1), we conclude that interannual variation of GPP is more closely controlled by 18 

precipitation rather than by temperature (Piao et a., 2009; Jung et al., 2011). The TRIFFID 19 

model has the highest int
GPP  (7.6±1.5 Pg C yr-1 per 100 mm or 5.5±1.1% per 100 mm) as seen 20 

in Fig. 3b. Differences in simulated land cover between models, in addition to structural 21 

sensitivities (i.e., sensitivity of stomata to soil moisture) may also explain the variability 22 

among models, particularly in arid and temperate regions (Poulter et al. 2011). 23 

 24 

3.5 Response of vegetation productivity to CO2  25 

According to the results of simulation S1 driven by atmospheric CO2 only, model results 26 

consistently indicate that rising atmospheric CO2 concentration increased NPP by 3-10% with 27 

an average of 7% over the past three decades (for a 48 ppm CO2 increase) (or 0.05-0.2 % 28 
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ppm-1 with the average of 0.16 % ppm-1). This relative response of NPP to CO2 ( NPPR ) is 1 

slightly larger than the sensitivity derived from FACE elevated CO2 experiments, which 2 

might be expected because of the saturating effect of CO2 on photosynthesis. Norby et al. 3 

(2005) analyzed the response of NPP to elevated CO2 in four FACE experiments in temperate 4 

forest stands and concluded that the enhancement of NPP due to elevated CO2 (about 180 5 

ppmv) was of about 23% (or 0.13% ppm-1). When comparing the results from the four FACE 6 

experiments with model simulations at the corresponding sites and climatic condition, 7 

however, we found that the models underestimated CO2 fertilization effect on NPP at the 8 

ASPEN FACE site, but overestimated it at the Duke and ORNL FACE sites (Fig. 6). The 9 

study of Hickler et al. (2008) suggested that these currently available FACE results are not 10 

applicable to vegetation globally since there may be large spatial heterogeneity of the positive 11 

effect of CO2 on vegetation productivity across the global land surface. Hence we do not 12 

present the FACE values in global plot Fig 5a. As shown in Fig. 6, the modeled response of 13 

NPP to CO2 is generally larger in dryer regions. Among the four FACE experimental sites, a 14 

largest CO2 fertilization effect of NPP was also found in the driest (ASPEN FACE) site (Fig. 15 

6 and Table S3). This NPP enhancement could be due to the additional saving of soil moisture 16 

induced by elevated CO2 on stomatal closure (i.e. increased water use efficiency of plants in 17 

water limited regions).  18 

 19 

It has been suggested that the CO2 fertilization effect on vegetation productivity may be 20 

overestimated by not considering N limitations (Hungate et al., 2003; Bonan and Levis, 2010; 21 

Zaehle et al., 2010). As in Bonan and Levis 2010, we find that for CLM4, GPP  in the 22 

CLM4CN that considers C-N interaction and N limitations is lower than that estimated in the 23 

CLM4C without C-N interaction (Fig 5a). In boreal regions, GPP  of CLM4CN (2.2±1.4Pg 24 

C yr-1 per 100 ppm or 12±8% per 100 ppm) is only about half of CLM4C estimated GPP  25 

(4.4±1.5Pg C yr-1 per 100 ppm 21±7% per 100 ppm). As noted previously (Zaehle & 26 

Dalmonech 2011), there is a difference in the extend of N limitation on global carbon cycling 27 

between CLM4C-N and OCN, although both of them have N limitations on GPP. OCN 28 
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predicts a relatively high GPP , particularly in tropical regions (12.7±1.6 Pg C yr-1 per 1 

100ppm or 18±2% per 100ppm), which is two times larger than that estimated by CLM4CN 2 

(6.6±1.2 Pg C yr-1 per 100ppm or 7±1% per 100ppm) (Fig. S9c).  3 

 4 

According to equation (3), the GPP data-driven product of JU11 shows weak sensitivity 5 

to CO2 at the global scale (Fig. 5a), although satellite data used to drive the empirical model 6 

of Jung et al. (2011) includes a greening trend whose spatial pattern can be partly accounted 7 

for by rising CO2 (Piao et al., 2006). Furthermore, the model results show that GPP  derived 8 

from simulations S2 (i.e. consider both climate change and rising atmospheric CO2 9 

concentration and equation (3)) are generally larger than GPP  from simulation S1 that only 10 

consider rising atmospheric CO2 concentration (Fig. 5a). This is particularly true in the 11 

tropical regions (Fig. S9c). This may be partly because the mean climate in the early decades 12 

of the 20th century for S1 simulation is wetter than that in end decades of the 20th century for 13 

S2 simulation in the tropical regions (IPCC, 2007), or indicate that the linear regression 14 

approach does not replicate the intricate non-linear complexity of the global carbon cycle. 15 

 16 

4 Net Biome Productivity 17 

4.1 NBP estimation 18 

Global NBP is not significantly correlated with the global GPP across 10 models 19 

(R=0.48, P=0.16) (Fig. 1), suggesting that models predicting larger GPP does not necessarily 20 

translate into larger NBP. The ensembles model average NBP (all without land use change) 21 

during the period 1980-2009 is 2.0±0.8 Pg C yr-1, which is very close to the RLS of 2.1±1.2 22 

Pg C yr-1. However, there are large differences among different models, with NBP ranging 23 

from 0.24±1.03 Pg C yr-1 (VEGAS) to 3.04±0.98 Pg C yr-1 (HYLAND) (Fig. 1). The smaller 24 

NBP of VEGAS is related to the net tropical carbon source produced by this model (-0.12±0.9 25 

Pg C yr-1). In contrast, the other 9 models (in absence of land-use) produce a net sink of 26 

1.13±0.44 Pg C yr-1 on average (Fig. S2c), explaining 54% of global RLS.  27 

 28 

In addition, for analysis of the interannual variability in modeled global NBP from 1980 29 
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to 2009, all models show generally good agreement with the observed variability of the RLS 1 

(P<0.05) (Fig. 2b). Interestingly, for NBP variability, CLM4CN has a lower correlation with 2 

RLS than CLM4C (Fig. 2b), implying that in this particular model, incorporation of the 3 

nitrogen cycle does not improve the performance for interannual variability, which may 4 

reflect model structural problems in describing processes controlling C-N interactions (Bonan 5 

and Levis, 2010). Note, however, that a strong dampening of the interannual variability in the 6 

carbon cycle is not a general feature of nitrogen dynamics (Zaehle et al. 2010). In addition, at 7 

the regional scale, the correlation of interannual NBP among different models is higher in the 8 

tropical regions than that in non-tropical regions (Fig. S5).  9 

 10 

4.2 Response of NBP to temperature variations ( int
NBP ) 11 

Direct observational evidence for a positive feedback of the terrestrial carbon cycle to 12 

climate warming is limited (Scheffer et al., 2006; Cox and Jones, 2008; Frank et al., 2010). 13 

Applying the regression of Equation (1) to RLS timeseries defines an ‘observed’contributive 14 

effect of temperature variations on the RLS variations ( int
RLS ) of -3.9±1.1 Pg C yr-1 oC-1 (Fig. 15 

3a), which is larger than, but within the uncertainty range of int
NBP in the 10 models (-3.0±1.5 16 

Pg C yr-1 oC-1). Except for HYLAND and SDGVM, 8 out of 10 models show significant 17 

negative correlation between NBP and MAT, but int
NBP  varies among models from -1.0±0.6 18 

Pg C yr-1 oC-1 in HYLAND to -5.1±0.9 Pg C yr-1 oC-1 in LPJ-GUESS. Such difference in  19 

across 10 models mainly depends on model differences in the response of GPP to temperature 20 

(R=0.63, P=0.05), rather than response of respiration to temperature (R=0.44, P>0.05). 21 

Furthermore, the contribution of fire to the  is also limited (Fig. S8a). The value of int
NBP  in 22 

CLM4CN (-2.1±0.5 Pg C yr-1 oC-1) is only half of that in CLM4C (-4.3±0.8 Pg C yr-1 oC-1), 23 

which may be partly because during warmer years, increased soil nitrogen mineralization and 24 

availability may promote vegetation growth (Melillo et al., 2002). However, int
NBP  from 25 

CLM4C is closer to the observed int
RLS  that for CLM4CN.  26 

 27 
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The negative value of global int
NBP  is mainly due to negative NBP anomalies (abnormal 1 

CO2 source to the atmosphere) occurring during warm years over tropical regions (Fig. S6c). 2 

All models show statistically significant interannual correlation of NBP with MAT in the 3 

tropical regions (R <0.05), and an average int
NBP  of -3.0 ±1.2 Pg C yr-1 oC-1. Compared with 4 

tropical regions, other regions have a relatively smaller int
NBP  (Fig. S6). In the boreal zone, 5 

there are large differences in the magnitude and even in the sign of int
NBP  among models. For 6 

example, LPJ, LPJ-GUESS, and TRIFFID have a int
NBP  of -0.37 ±0.13 Pg C yr-1 oC-1, -0.53 7 

±0.19 Pg C yr-1 oC-1, and -0.29 ±0.1 Pg C yr-1 oC-1, respectively, but VEGAS has a positive 8 

int
NBP  of 0.23 ±0.08 Pg C yr-1 oC-1 (Fig. S6a) due to its highest int

GPP  (Fig. S6a). Such model 9 

divergence on  over boreal zone and the consistency in the sign of  over tropical zone can 10 

explain why models agree more on the interannual variation of tropical NBP than on the 11 

interannual variations of boreal NBP (Fig. S5a and c). In the northern temperate regions, all 12 

models (except CLM4CN) show negative int
NBP  with average of -0.44 ±0.45 Pg C yr-1 oC-1 13 

(Fig. S6b). 14 

 15 

4.3 Response of NBP to precipitation variations ( int
NBP ) 16 

The RLS is not significantly correlated with the precipitation (after statistically removing 17 

the contributive effect of temperature using partial correlation) at the global scale, but in 18 

contrast, 8 of 10 models still have a significant positive correlation between NBP and 19 

precipitation (all variables detrended) (Fig. 3b). Furthermore, 9 models (except LPJ-GUESS) 20 

estimate a higher int
NBP (average of 2.3±1.6 Pg C yr-1 per 100 mm of interannual precipitation 21 

change) compared to the observed RLS (0.8±1.1 Pg C yr-1 per 100 mm of interannual 22 

precipitation change) (Fig. 3b). These results indicate that current state-of-the-art carbon cycle 23 

models are likely to be too sensitive to precipitation variability. TRIFFID has the highest int
NBP  24 

sensitivity (6.0±0.9 Pg C yr-1 per 100 mm) due to highest. At the global scale,  is 25 

significantly increased with the increase in  by the slope of 0.61 across 10 models (R=0.81, 26 
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P<0.01). In addition, the model estimated response fire emission to precipitation is much 1 

smaller than the inter-model differences in (Fig. S8).  2 

 3 

It has been suggested that decreased CO2 sinks in the next century over tropical regions, 4 

in response to soil drying, was one of the principal mechanisms explaining the positive carbon 5 

cycle-climate feedback diagnosed from the C4MIP coupled models (Friedlingstein et al., 6 

2006; Sitch et al., 2008). In the tropics indeed, all models (nine of ten models significant) 7 

consistently produce a positive interannual covariance between precipitation and NBP. 8 

TRIFFID has the highest tropical int
NBP  (1.5±0.2 Pg C yr-1 per 100 mm), while ORCHIDEE 9 

shows the smallest tropical int
NBP  (0.3±0.3 Pg C yr-1 per 100 mm). In the extra-tropical 10 

regions however, several models predict a negative response of NBP to wetter years, but the 11 

NBP-precipitation relationship is generally not significant (HYLAND, CLM4CN, and 12 

SDGVM only exhibit a significant relationship in the boreal region, and TFIFFID, LPJ, OCN 13 

in the northern temperate regions as shown by Fig. S7). In both boreal and temperate regions, 14 

the highest int
NBP  was also simulated by the TRIFFID model due to its highest int

GPP  (Fig. 15 

S7a and b).  16 

 17 

4.4 Response of NBP to rising atmospheric CO2 concentration ( NBP ) 18 

From the average of the 10 models, we estimated NBP  using simulation S1 to be 2.3919 

±1.52 Pg C yr-1 per 100 ppm at the global scale. CLM4CN shows the smallest NBP  of 0.5420 

±2.79 Pg C yr-1 per 100 ppm, which is only 23% of NBP in CLM4C. This supports results 21 

from previous studies that the nutrient limitation of vegetation productivity and carbon 22 

sequestration could decrease the land carbon sensitivity to atmosphere CO2 concentration 23 

(Sokolov et al., 2008; Thornton et al., 2009; Zaehle et al., 2010). ORCHIDEE has the largest 24 

NBP of 5.86±2.02 Pg C yr-1 per 100 ppm (Fig. 5b), probably due to its highest GPP  25 

compared to other models (Fig. 5a). Indeed, there is a significant correlation between NBP  26 
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and GPP across 10 models (P<0.05), suggesting that models have different NBP  partly 1 

because of the different CO2 fertilization effect on the vegetation growth (Ciais et al., 2005). 2 

Among the 10 models, CLM4CN simulates the lowest carbon sequestration efficiency under 3 

rising atmospheric CO2 concentration (4%), defined as the ratio of NBP to GPP , while 4 

ORCHIDEE has the highest carbon sequestration efficiency under rising atmospheric CO2 5 

concentration (20%). The ratio of NBP to GPP  for the ensemble model average is about 126 

±4%. 7 

 8 

Similar to GPP (Fig. 5a), NBP  derived from simulation S2 and equation (3) is 9 

generally larger than NBP  from simulation S1 (Fig. 5b), particularly in tropical regions (Fig. 10 

S10c). As shown in Fig. 5b, CLM4CN, OCN, SDGVM, and VEGAS estimated global NBP  11 

from the simulation S2 with equation (3) is smaller than the diagnosed sensitivity of RLS to 12 

atmospheric CO2 ( RLS , 8.12±2.38 Pg C yr-1 per 100 ppm) based on equation (3). However, 13 

it should be noted that since other factors such as ecosystem management and nitrogen 14 

deposition could also explain the trend of RLS over the last three decades (Zaehle et al., 2006; 15 

Ciais et al., 2008; Bellassen et al., 2010; Magnani et al., 2007, Zaehle & Dalmonech 2011), 16 

the sensitivity of RLS to CO2 from the equation (3) may be overestimated.  17 

 18 

5. From model testing to directions for future research 19 

To overcome the inevitable spread of curves resulting from a comparison of complex 20 

models with poorly constrained processes, we compared in this study the contributive 21 

response of models to climate variability, with available ‘observations’ (in fact other 22 

data-driven models). The main contributive responses to interannual climate drivers are γ – 23 

the response to temperature anomalies in units of PgC yr-1 °C-1, δ – the response to rainfall 24 

anomalies in units of PgC yr-1 100 mm-1, and β – the response to CO2 trend, in units of PgC 25 

yr-1 100 ppm-1. Four key datasets are used to estimate these contributive responses, a 26 

data-oriented gridded GPP field (JU11), imposed warming experiments, imposed raised 27 
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atmospheric CO2 experiments (FACE) and the global residual land sink modeled to close the 1 

anthropogenic CO2 budget (RLS). These four datasets provide information on different 2 

contributive responses, JU11 constrains γ, δ and β of GPP, experimental warming site data 3 

constrain γ of NPP, the (scarce) FACE site data constrain β of NPP, and the RLS over 30 years 4 

constrains γ, δ and β of NBP. We report the following new findings. 5 

1. The 10 carbon cycle models give a higher mean GPP and a higher year to year GPP 6 

variability than JU11, particularly in tropical regions. In tropical regions, the GPP interannual 7 

variance in JU11 may however be considered as too uncertain to falsify the process models. 8 

JU11 trained their MTE using spatial gradients among different sites (there are few long 9 

series) and extrapolated temporal gradients, confounding spatial and interannual sensitivity of 10 

GPP to climate. To overcome this limitations of comparing the uncertain process-models with 11 

another uncertain data-driven model, we recommend future work to models at site scale at 12 

which the measurements are made (in particular the long term FLUXNET sites) to investigate 13 

their response to climate drivers for different time scales, and different ecosystems (Schwalm 14 

et al. 2010). This will also require better protocols with site-history to account for site specific 15 

disequilibrium of biomass and soil carbon pools (Carvaillhais et al. 2007, 2008). 16 

2. The process models generally capture the interannual variation of the data-driven 17 

residual land carbon sink (RLS) estimation over the last three decades. But the models’s 18 

contributive response to precipitation is too high, particularly in tropical forests and savannas 19 

(Wang et al., 2012). It is not clear, however, if this too high contributive response of NBP to 20 

rainfall is induced by a bias of GPP or ecosystem respiration to soil moisture, or to an 21 

inaccurate representation of soil moisture by models. We recommend future work to compare 22 

the contributive response of net and gross CO2 fluxes between models with independent 23 

large-scale flux estimations, such as from data-driven upscaling of fluxes and top down 24 

inversions. 25 

3. In response to interannual variation in temperature, all the models are found to 26 

simulate a stronger negative response of NBP than GPP, implying that respiration responds 27 

positively to temperature. To investigate this effect, we evaluated for the first time the global 28 

process models against site-data from a collection of ecosystem warming experiments. We 29 

find that models tend to under-predict the response of NPP to temperature change at the 30 
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temperate sites. However it is difficult to tell from the warming experiments for NPP, which 1 

have significant between-site variation, whether this results predominantly from plant or soil 2 

respiration, or possibly both, where the balance varies strongly depending on geographical 3 

variation. The different approaches to derive the NPP response to temperature between global 4 

models forced offline by gridded climate data, and local field warming experiments that are 5 

coupled to the atmosphere, bias as well as the fact that process models do not consider 6 

sub-grid scale heterogeneity in environmental conditions and vegetation distribution. We 7 

recommend to design a global benchmarking of carbon cycle models against ecosystem 8 

warming and drought experiments, and to compile a database of experiments results and 9 

forcing data that would be open-access. 10 

4. Despite the fact that carbon cycle models are often suspected to overestimate CO2 11 

fertilization as a driver of net land uptake, we found that the ensemble mean global NPP 12 

enhancement is comparable with FACE experiments observation. The CLM4CN model that 13 

have nitrogen limitations do show a sensitivity of NPP to CO2 that is 50% lower than the 14 

same models versions (CLM4C) but without nitrogen. The strength of the CO2 fertilization on 15 

the NBP is poorly quantified. The magnitude of NBP response to CO2 is not merely dependent 16 

on the NPP response. NPP increases could create higher litterfall enhancing soil carbon stores 17 

also available to respire. We recommend all carbon cycle models to include nutrients, and 18 

pursue the evaluation of C-N interactions using both global and local observations (e.g., 19 

Zaehle et al. 2010).  20 

Overall, reducing these uncertainties of climate sensitivities of carbon fluxes is essential 21 

to more accurately predict future dynamics of the global carbon cycle and its feedbacks to 22 

climate system, and thus it is a priority for the carbon cycle modeling community. We 23 

recommend carbon cycle models to be run both "free running" with their default parameters 24 

values used in global simulations, and "adjusted" with parameters calibrated or optimized 25 

against site observations (e.g, warming, precipitation, and elevated CO2 experiments, fluxnet 26 

data) so that the" portability" of improvements gained from small scale can be assessed at 27 

larger, regional or global scale. 28 
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Figure Legends 1 

 2 

Figure 1. The magnitude of global Gross Primary Production (GPP) and global Net Biome 3 

Productivity (NBP) estimated by the 10 carbon cycle models. x-axis indicates mean annual 4 

global GPP during 1982-2008 with error bars showing standard deviation of the inter-annual 5 

variations. y-axis indicate mean annual global NBP during 1980-2009 with error bars showing 6 

standard deviation of the inter-annual variations. The red line shows global GPP estimated by 7 

a data driven model tree ensemble approach (JU11, Jung et al., 2011), while black lines shows 8 

global Residual Land Sink (RLS) (Friedlingstein et al., 2010). Global RLS is estimated as the 9 

difference between CO2 emissions (from fossil fuel combustion and land use change) and 10 

carbon storage change in the atmosphere (atmospheric CO2 growth rate) and in the oceans 11 

(model simulated ocean carbon sink) (Friedlingstein et al., 2010). The 10 carbon cycle models 12 

include Community Land Model 4C (CLM4C), Community Land Model 4CN (CLM4CN), 13 

HYLAND, Lund-Potsdam-Jena (LPJ), LPJ-GUESS, O-CN (OCN), ORCHIDEE, 14 

Sheffield-DGVM (SDGVM), TRIFFID and VEGAS. 15 

 16 

Figure 2. Color-coded correlation matrixes for global GPP estimated by the 10 carbon cycle 17 

models and a data driven model tree ensemble approach (JU11, Jung et al., 2011) and global 18 

NBP estimated by the 10 carbon cycle models and global Residual Land Sink (RLS) 19 

(Friedlingstein et al., 2010). The correlation matrixes display (a) correlation coefficient in 20 

pairs among detrended GPP anomalies estimated by the different approaches during 21 

1982-2008. (b) correlation coefficient in pairs among detrended NBP anomalies estimated by 22 

different models and RLS during 1980-2009. Model abbreviations are the same as in Figure 1. 23 

 24 

Figure 3. The response of global Gross Primary Production (GPP), global Net Biome 25 

Production (NBP) and global Residual Land Sink (RLS) to (a) interannual variation in 26 

temperature ( int
GPP , 

int
NBP  and int

RLS , respectively) and (b) interannual variation in 27 

precipitation ( int
GPP , int

NBP  and int
RLS , respectively). int

GPP  and int
GPP  are estimated using 28 

Eq.1 with data during 1982-2008. int
NBP , int

NBP , int
RLS , and int

RLS  estimated using Eq.1 with data 29 
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during 1980-2009. Grey area indicates the standard error of int
RLS  and int

RLS . Error bars show 1 

standard error of the sensitivity estimates. Dashed error bars in both (a) and (b) indicate the 2 

estimated sensitivity from the regression approaches are statistically insignificant (P>0.05). 3 

The red line shows the 1σ range of GPP  estimated by JU11’s GPP products using Eq. 3. 4 

Model abbreviations are the same as in Figure 1.  5 

 6 

Figure 4. Comparisons of observed relative response of Net Primary Production (NPP) to 7 

temperature change in warming experiments (Lu et al., in preparation, Table S1) and 8 

estimated relative response of NPP to interannual variation in temperature ( int
NPPR , the ratio of 9 

int
NPP to 30 year average NPP) by 10 models for the period of 1980-2009. The gray histogram 10 

at each site shows the frequency distribution of int
NPPR  according to the ensemble of 10 11 

model simulations at the grid containing the experiment site and at model grids with grassland 12 

dominant land cover (grassland vegetation more than 50% according to GLC land cover map, 13 

changing the threshold of grassland percentage from 50% to 70% only induce small change in 14 

the frequency distribution of int
NPPR  (Figure S11)) and with similar climate to the experiment 15 

site (the difference in mean annual temperature less than 1oC and difference in mean annual 16 

precipitation less than 50 mm). The mean of model estimated int
NPPR  is shown in dashed 17 

black line. Model estimates at the gridcell of the experiment site are shown using 18 

model-specific mark and color with horizontal error bars showing standard error of int
NPPR  19 

estimated by the same model in the ensemble of this grid and grids with grassland dominant 20 

land cover and showing similar climate. The position of model-specific mark in the vertical 21 

axis only represents alphabetical order of model abbreviations. Observed relative temperature 22 

sensitivities of NPP in different plots or different time period in the same site, if reported, are 23 

shown separately in red circles. Since belowground NPP was not measured in HARS and 24 

Toolik Lake, experiment observed temperature sensitivities of NPP at the two sites were based 25 

on aboveground NPP measurements. The background color map shows spatial distribution of 26 

average of int
NPPR  from 10 carbon cycle models. Pentagrams in the color map show locations 27 
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of experiment sites. Model abbreviations are the same as in Figure 1. 1 

 2 

Figure 5. The response of global Gross Primary Production (GPP), global Net Biome 3 

Productivity (NBP) and global Residual Land Sink (RLS) to rising atmospheric CO2 4 

concentration ( GPP , NBP  and RLS , respectively). (a) GPP estimated by the two 5 

approaches. x-axis indicates GPP  estimated by Eq. 2 using simulation S1, while y-axis 6 

indicates GPP  estimated by Eq. 3 using simulation S2 with data during 1982-2008. (b) 7 

NBP  estimated by two approaches. x-axis indicates NBP  estimated by Eq. 2 using 8 

simulation S1, while y-axis indicates NBP  estimated by Eq. 3 using simulation S2 with data 9 

during 1980-2009. Error bars show standard error of the sensitivity estimates. The solid black 10 

line shows RLS  estimated by Eq. 3. Grey area shows the standard error of the RLS . Dashed 11 

error bars in both (a) and (b) indicate the estimated sensitivity from the regression approaches 12 

are statistically insignificant (P>0.05). Model abbreviations are the same as in Figure 1.  13 

 14 

Figure 6. Comparison of the observed relative response of Net Primary Production (NPP) to 15 

rising atmospheric CO2 concentration in the Free Atmospheric CO2 Enrichment (FACE) 16 

experiment sites (Table S2) and estimated relative response of NPP to rising atmospheric CO2 17 

( NPPR , the ratio of NPP  estimated by the Eq. 2 to 30 year average NPP) by 10 models for 18 

the period 1980-2009. The gray histogram at each site shows the frequency distribution of 19 

NPPR  according to the ensemble of 10 model simulations at the grid containing the 20 

experiment site and at model grids with forest dominant land cover (forest vegetation more 21 

than 50% according to GLC2000 land cover map, changing the threshold of forest percentage 22 

from 50% to 70% only induce small change in the frequency distribution of NPPR  (Figure 23 

S12)) and with similar climate to the experiment site (the difference in mean annual 24 

temperature less than 1oC and difference in mean annual precipitation less than 50 mm). The 25 

mean of the model estimated NPPR  is shown in dashed black line. Model estimates at the 26 
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grid containing the experiment site are shown using model-specific symbol and color with 1 

horizontal error bars showing standard error of the NPPR  estimated by the same model in 2 

the ensemble of this grid and grids with forest as the dominant land cover having similar 3 

climate. The position of model-specific mark in the vertical axis only represent alphabetical 4 

order of model abbreviations. Observed NPP response to rising atmospheric CO2 at different 5 

year at the same site are shown separately in red circles. The background color map shows 6 

spatial distribution of NPPR  estimated from the average NPP of the 10 carbon cycle models. 7 

Solid pentagrams in the map show locations of the FACE forest sites. Model abbreviations are 8 

the same to Figure 1. 9 
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Figure Legends 1 

 2 

Figure 1. The magnitude of global Gross Primary Production (GPP) and color-coded 3 

correlation matrix for global GPP estimated by the 10 carbon cycle models and a data driven 4 

model tree ensemble approach (JU11, Jung et al., 2011). (a) Mean annual global GPP during 5 

1982-2008 with error bars showing standard deviation of the inter-annual variations. (b) The 6 

correlation matrix displays correlation coefficient in pairs among detrended GPP anomalies 7 

estimated by the different approaches during 1982-2008. The 10 carbon cycle models include 8 

Community Land Model 4C (CLM4C), Community Land Model 4CN (CLM4CN), 9 

HYLAND, Lund-Potsdam-Jena (LPJ), LPJ-GUESS, O-CN (OCN), ORCHIDEE, 10 

Sheffield-DGVM (SDGVM), TRIFFID and VEGAS. 11 

 12 

Figure 2. The response of global Gross Primary Production (GPP) to interannual variation in 13 

temperature ( int
GPP ), interannual variation in precipitation ( int

GPP ), and rising atmospheric CO2 14 

concentration ( GPP ) during 1982-2008. (a) int
GPP  and int

GPP . int
GPP  and int

GPP  are estimated 15 

using Eq.1 and simulation S2. Error bars show standard error of the sensitivity estimates. (b) 16 

GPP estimated by two approaches. x-axis indicates GPP  estimated by Eq. 2 using 17 

simulation S1, while y-axis indicates GPP  estimated by Eq. 3 using simulation S2. Error 18 

bars show standard error of the sensitivity estimates. The solid black line shows GPP  19 

estimated by JU11’s GPP products using Eq. 3. The red line shows the 1σ range of GPP  20 

estimated by JU09’s GPP products using Eq. 3. Dashed error bars in both (a) and (b) indicate 21 

the estimated sensitivity from the regression approaches are statistically insignificant 22 

(P>0.05).  23 

 24 

Figure 3. Comparisons of observed relative response of Net Primary Production (NPP) to 25 

temperature change in warming experiments (Lu et al., in preparation, Table S1) and 26 

estimated relative response of NPP to interannual variation in temperature (, the ratio of to 30 27 

year average NPP) by 10 models for the period of 1980-2009. The gray histogram at each site 28 



 2

shows the frequency distribution of  according to the ensemble of 10 model simulations at 1 

the grid containing the experiment site and at model grids with grassland dominant land cover 2 

(grassland vegetation more than 50% according to GLC land cover map) and with similar 3 

climate to the experiment site (the difference in mean annual temperature less than 1oC and 4 

difference in mean annual precipitation less than 50 mm). The mean of model estimated  is 5 

shown in dashed black line. Model estimates at the gridcell of the experiment site are shown 6 

using model-specific mark and color with horizontal error bars showing standard error of  7 

estimated by the same model in the ensemble of this grid and grids with grassland dominant 8 

land cover and showing similar climate. The position of model-specific mark in the vertical 9 

axis only represents alphabetical order of model abbreviations. Observed relative temperature 10 

sensitivities of NPP in different plots or different time period in the same site, if reported, are 11 

shown separately in red circles. Since belowground NPP was not measured in HARS and 12 

Toolik Lake, experiment observed temperature sensitivities of NPP at the two sites were based 13 

on aboveground NPP measurements. The background color map shows spatial distribution of 14 

average of  from 10 carbon cycle models. Pentagrams in the color map show locations of 15 

experiment sites. Model abbreviations are the same as in Figure 1.. 16 

 17 

Figure 4. Comparison of the observed relative response of Net Primary Production (NPP) to 18 

rising atmospheric CO2 concentration in the Free Atmospheric CO2 Enrichment (FACE) 19 

experiment sites (Table S2) and estimated relative response of NPP to rising atmospheric CO2 20 

(, the ratio of  estimated by the Eq. 2 to 30 year average NPP) by 10 models for the period 21 

1980-2009. The gray histogram at each site shows the frequency distribution of  according to 22 

the ensemble of 10 model simulations at the grid containing the experiment site and at model 23 

grids with forest dominant land cover (forest vegetation more than 50% according to 24 

GLC2000 land cover map) and with similar climate to the experiment site (the difference in 25 

mean annual temperature less than 1oC and difference in mean annual precipitation less than 26 

50 mm). The mean of the model estimated  is shown in dashed black line. Model estimates at 27 

the grid containing the experiment site are shown using model-specific symbol and color with 28 

horizontal error bars showing standard error of the  estimated by the same model in the 29 

ensemble of this grid and grids with forest as the dominant land cover having similar climate. 30 



 3

The position of model-specific mark in the vertical axis only represent alphabetical order of 1 

model abbreviations. Observed NPP response to rising atmospheric CO2 at different year at 2 

the same site are shown separately in red circles. The background color map shows spatial 3 

distribution of  estimated from the average NPP of the 10 carbon cycle models. Solid 4 

pentagrams in the map show locations of the FACE forest sites. Model abbreviations are the 5 

same to Figure 1. 6 

 7 

Figure 5. The magnitude of global Net Biome Productivity (NBP) and color-coded 8 

correlation matrix for global NBP estimated by the 10 carbon cycle models and global 9 

Residual Land Sink (RLS) (Friedlingstein et al., 2010). (a) Mean annual global NBP during 10 

1980-2009 with error bars showing standard deviation of the inter-annual variations. (b) The 11 

correlation matrix displays correlation coefficient in pairs among detrended NBP anomalies 12 

estimated by different models and RLS during 1980-2009. Global RLS is estimated as the 13 

difference between CO2 emissions (from fossil fuel combustion and land use change) and 14 

carbon storage change in the atmosphere (atmospheric CO2 growth rate) and in the oceans 15 

(model simulated ocean carbon sink) (Friedlingstein et al., 2010). Model abbreviations are the 16 

same as in Figure 1. 17 

 18 

Figure 6. The response of global Net Biome Productivity (NBP) and global Residual Land 19 

Sink (RLS) to interannual variation in temperature ( int
NBP and int

RLS , respectively), interannual 20 

variation in precipitation ( int
NBP and int

RLS , respectively), and rising atmospheric CO2 21 

concentration ( NBP and RLS , respectively) during 1980-2009. (a) int
NBP , int

NBP , int
RLS , and int

RLS  22 

estimated using Eq.1. Error bars show standard error of the sensitivity estimates. Grey area 23 

indicates the standard error of int
RLS  and int

RLS . (b) NBP  estimated by two approaches. 24 

x-axis indicates NBP  estimated by Eq. 2 using simulation S1, while y-axis indicates NBP  25 

estimated by Eq. 3 using simulation S2. Error bars show standard error of the sensitivity 26 

estimates. The solid black line shows RLS  estimated by Eq. 3. Grey area shows the standard 27 



 4

error of the RLS . Dashed error bars in both (a) and (b) indicate the estimated sensitivity from 1 

the regression approaches are statistically insignificant (P>0.05). Model abbreviations are the 2 

same as in Figure 1.  3 

 4 

5 



 5

Figure 1. 1 

 2 

 3 

 4 

5 



 6

(a) 

(b) 

Figure 2. 1 

 2 

 3 

 4 

 5 

6 



 7

Figure 3. 1 

 2 

 3 

4 



 8

Figure 4 1 

 2 

 3 

 4 

5 

 



 9

Figure 5 1 

 2 

 3 

4 



 10

(a) 

(b) 

Figure 6 1 

 2 

 3 

 4 

 5 


	sitch
	s. sitch
	NO FIGURES Piao_MS20130128[1]
	Piao_MS20121130-figures


