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Science at the Environment Agency

Science underpins the work of the Environment Agency, by providing an up to date
understanding of the world about us, and helping us to develop monitoring tools and
techniques to manage our environment as efficiently as possible.

The work of the Science Group is a key ingredient in the partnership between
research, policy and operations that enables the Agency to protect and restore our
environment.

The Environment Agency’s Science Group focuses on five main areas of activity:

• Setting the agenda: To identify the strategic science needs of the Agency to inform its
advisory and regulatory roles.

• Sponsoring science: To fund people and projects in response to the needs identified by
the agenda setting.

• Managing science: To ensure that each project we fund is fit for purpose and that it is
executed according to international scientific standards.

• Carrying out science: To undertake the research itself, by those best placed to do it -
either by in-house Agency scientists, or by contracting it out to universities, research
institutes or consultancies.

• Providing advice: To ensure that the knowledge, tools and techniques generated by the
science programme are taken up by relevant decision-makers, policy makers and
operational staff.

Professor Mike Depledge Head of Science
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Executive Summary
The LIFE methodology has demonstrated that it is possible to link changes in benthic
invertebrate community structure (as sampled routinely by Environment Agency biologists)
with indices of historical river flow at a gauge close to the sample site. This report
investigates the response of LIFE observed/expected (O/E) score to preceding gauged flows
through a linear modelling framework.

Data were supplied by the Environment Agency in Excel files – key data were extracted from
the three main tables and loaded into a relational database. This initially included all available
macroinvertebrate sample data up to December 1999 and some data from 2000 and 2001.
Later it was agreed to take advantage of the macroinvertebrate data available since 2001, and
thus the LIFE score database was extended to the end of 2003. To match this, all flow indices
were re-calculated for water years 1989-2002. Additional data derived by the Centre for
Ecology and Hydrology (CEH) were added to the database. RIVPACS was run for the
majority of the sample sites, either using site characteristic data held already in the CEH
Dorset Invertebrate Database, or the site characteristics provided with the data. The
RIVPACS outputs were the most probable RIVPACS group and expected LIFE scores, for
spring, summer, and autumn samples. The Institute of Hydrology Report 108 low flow quality
classification was also added for each gauging station.

Following exploratory data analysis, some sites were excluded from the data-set on the basis
that their characteristics (e.g. deep water and silty bed) make their macroinvertebrate
community unlikely to respond to flow in the manner for which the LIFE index was designed.

Linear modelling demonstrated that autumn LIFE O/E score does, indeed, vary systematically
with flow. Flow variables from the immediately preceding summer are the most important in
explaining variation. The relative importance of high and low flow variables can depend on
how they are standardised. The simplest models, which explain variation in LIFE score solely
on preceding flows, confirm the validity of the LIFE approach, but do not explain a high
proportion of overall variation in LIFE score.

Various site-specific factors were used to improve the fit of the model, most notably splitting
the sites into categories based on base flow index (BFI), and also on whether there are
significant artificial influences in the catchment. These give model R² values of between 0.1
(high BFI) to 0.2 (low BFI). Adding the immediately preceding spring sample LIFE O/E as an
explanatory variable increases R² to 0.4. A ‘site’ factor that encompasses all unexplained
variation in mean LIFE O/E increases R² to 0.6, an encouraging result that indicates a
maximum value for R², but still retains a common slope. A simple approach of adding
RIVPACS group (two to four categories) as an interaction term (i.e., affecting slope of
response) did not add to the model fit.

There is a trend for higher BFI sites to show negative relationships between LIFE O/E and
winter Q10 (high flow index). These sites are also more strongly associated with Q95 (low
flow index) flows from the previous summer, although this trend is weak, and is dependent on
the method of flow standardisation. Both these relationships can be masked easily by inter-
site differences. Analysis of the autocorrelation of residuals from the model suggested that the
year-to-year correlation of autumn LIFE O/E largely results from the correlation in the
explanatory flow variables. Also, there was little evidence for the perceived greater lag of
baseflow-dominated catchments, beyond that explainable by the lag in the flows themselves.
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In general, low flow duration indices are probably not the most sensitive indicators of LIFE
response in baseflow-dominated catchments – alternative indicators that emphasise drought
duration could give improved model fits.

There is still, clearly, considerable unexplained site-to-site variation in the LIFE O/E scores,
as illustrated by the wide variation in slopes of the individual sites’ LIFE O/E versus flow
relationship. For the analysis undertaken, the data supported common LIFE versus flow
slopes for all sites, although there was evidence of an interaction effect between artificial
influences and preceding summer Q10: the more influenced catchments had more depressed
LIFE O/E values when summer Q10 was low, but had LIFE O/E scores similar to the less
influenced catchments when summer Q10 was high. This was not the case for LIFE versus
preceding summer Q95.

Analysis of replicate data taken within a season allowed an average total within-season
standard deviation of LIFE score to be calculated – consistent with previous work, this
decreases with number of taxa observed. The average total within-season variance was
compared with the total mean squares of LIFE score to indicate the maximum potential model
R² possible, which was in the region of 0.75 – the quoted R² values for models should be
viewed with this in mind.

Unexplained variation in mean LIFE O/E can, hopefully, be tackled by improvements to
RIVPACS, perhaps by incorporating catchment characteristics from digital data-sets.
Unexplained variation in the slope of the response of LIFE to flow could be tackled in several
ways, including a more sophisticated application of the RIVPACS groupings. In addition, it is
likely that adding additional site factors, such as habitat types and/or channel geometry,
would improve the methodology. This unexplained variation needs to be addressed for single
LIFE O/Es to be a useful tool in determining abstraction and/or flow stress without supporting
information. However, the models as they stand would be extremely useful in helping to
determine response where only small amounts of data are available.
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1 Introduction

The LIFE methodology (Extence et al. 1999) has demonstrated that it is possible to link
changes in benthic invertebrate community structure (as sampled routinely by Environment
Agency biologists) with indices of historical river flow at a gauge close to the sample site.

These relationships allow a better understanding of the hydroecological processes that operate
in rivers of different types. In turn, this understanding should contribute to the cost effective
yet environmentally sound management of water resources. As LIFE has used existing
national data-sets, there is great potential to develop a standard methodology for ecological
flow assessment. In particular, methodologies are required to:

• determine environmental water requirements under CAMS;
• determine flow rates below which unacceptable ecological damage occurs when

considering abstraction licensing at the catchment and sub-catchment level.

A range of issues that require further investigation was reported by Balbi and Extence (2000),
along with a suggested twin track of further R&D:

• investigate links between LIFE score and RIVPACS;
• production of generalised LIFE response functions.

The R&D project reported herein covers the latter. The overall deliverables will be a
statistical model able to predict LIFE scores from time-varying hydrological and steady-state
catchment variables. The key criteria for variable selection will be the utility of the variables
in water resources management, and an understanding of the conceptual mechanism of how
the variation in those variables affects river benthic ecology.

1.1 The usefulness of the LIFE approach

Much previous work on environmental flows concentrated on the use of hydraulic-habitat
models, but this approach, which links hydraulic conditions to habitat preferences, requires
site-specific hydraulic and biological data. However, existing scoring systems, such as
BMWP and ASPT, were designed for water-quality assessment purposes, and so their use in
environmental flow assessment is unclear.

There is thus a pressing need for environmental flow tools that:
• are simple and rapid to apply;
• consider macroinvertebrates.

The LIFE index works at species or family level using existing biomonitoring data. Every
taxon has a velocity preference score from I to VI, and the standard logarithmic abundance
categories are used (A to E). A matrix is then used to give a score of between 1 and 12 for
each taxon in the sample. These are added together and the average score per taxon is
calculated. Importantly, the index thus produced is expected to be sensitive to both natural
and artificial flow changes, and thus allows an extrinsic hypothesis to be tested. This is
distinct from other recent work in which several less-specific indices (e.g., species richness,
diversity) are compared with a large number of flow variables to identify correlations.
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1.2 Previous work

Previous work is summarised in Extence et al. 1999. They demonstrated how LIFE scores
calculated from historical monitoring data could be linked to historical flow data at nearby
gauges (Figure 1-1). They tested a series of flow indices, including moving averages of
varying lengths, plus other summary statistics (e.g., flow duration, mean, extremes), and
picked the best correlations. Some commonalities were noted between river types. LIFE
scores at species level produced better relationships than those at family level. Problems with
this approach, including different ‘optimum’ flow variables being selected independently for
each site and other statistical issues, especially correlations in flow data caused by
overlapping periods of record, led to the formulation of this R&D project.
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Figure 1-1. Example time series of river flow and LIFE score

This project’s aim is to overcome the lack of data at individual sites by creating models based
on pooled data. It seems probable that the LIFE score is well-behaved statistically, allowing
multiple regression to be used as the primary analysis technique. The decision was also taken
to work with family level data to allow the largest choice of paired data-sets. Moving
averages were not chosen to index flows for two reasons – firstly, they are not commonly
used in water resources and, secondly, there are problems when either the time periods for
successive index points overlap in time or different intercorrelated averaging time periods are
compared. Instead, simple 6-monthly flow indices were chosen (Q10, Q50, and Q95) for
‘summer’ (April to September) and ‘winter’ (October to March) periods. These also fit well
with the invertebrate sampling data, the majority of which are collected in autumn or spring.

To prepare for this analysis, a wide-ranging search of Environment Agency data was carried
out by David Balbi (Balbi, 2001). The following paragraphs outline the selection criteria
applied by David, criteria originally specified in the project specification and subsequently
modified slightly.

All sites with at least two samples per year between 1995 and 2000 and good average water
quality (Lincoln Quality Index of C or better, based on rich habitat) were accepted and
classified as selection class 1 sites. Those Agency Areas that resulted in less than twenty
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suitable sample sites in criteria 1 were assessed further using two additional sample selection
criteria, until more than twenty sites were identified or criteria were exhausted, as follows:
Class 2.  At least one sample per year for nine years (1992 to 2000).
Class 3.  At least twenty samples in the past twenty years (1980 to 2000).

The invertebrate sample sites satisfying the required criteria were paired with gauged sites,
based on proximity and duration of flow record, using information supplied by Agency
Hydrologists. Lists of paired sites were then sent to Agency staff for comment, considering a
number of key points. In those areas with a paucity of paired sites, Hydrologists were also
asked to suggest gauged flows for unpaired invertebrate sample sites.
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2 Database

2.1 Introduction

Data were provided in three main Excel files, flow statistics (indexed by gauging station
number, and date), invertebrate samples (indexed by B4W site number and date), and paired
sites, linking gauging station number, and invertebrate site number. Within the flow file,
separate worksheets provided the fixed characteristics of the gauging stations and the time-
varying flow indices. The invertebrate samples file was structured similarly. The paired-sites
file contained a master list of paired sites plus individual workbooks for each region, in which
more details were provided on the pairs selected and rejected, arranged on an area-by-area
basis. Excel files were also provided with the raw flow data and the raw invertebrate taxa data
from each sample (Figure 2-1).

Key data were extracted from the three main tables and loaded into a relational database. This
enables efficient storage of the data without duplication, coding of virtually all categorical
data, checking of codes for consistency,1 and flexible retrieval of data in a variety of tabular
formats suitable for statistical analysis.

Figure 2-1. Relationships between tables in the LIFE database created for this project

                                                
1The coding highlighted one error in the paired sites, where invertebrate site 36186 was in the database twice
under different names.
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The database was initially constructed with all the available macroinvertebrate sample data up
to December 1999 and some data from 2000 and 2001. Flow indices were provided for an
agreed standard time period from October 1989 to September 1999 (water years 1989-1998).
Later in the project, it was agreed that we should take advantage of the macroinvertebrate data
available since 2001, particularly as this represented a period of relatively high flows, to
compare with the low flows in 1989-1992 and 1996-1997. Thus, the LIFE score database was
extended to the end of 2003. To match this, all flow indices were re-calculated for water years
1989-2002. This updating initially highlighted inconsistencies between the LIFE scores
previously provided and those provided later from B4W. To maintain consistency, the 2001-
2003 data were recalculated using the Environment Agency’s LIFE calculator spreadsheet.
Overall, this increased the number of years in the standard period from 10 to 14.

2.2 Additional data

Additional data derived by the Centre for Ecology and Hydrology (CEH) were added to the
database. RIVPACS was run for the majority of the sample sites, using the site characteristics
provided with the data or, where these were incomplete, site characteristic data from the 1995
GQA survey held in the CEH Dorset Invertebrate Database. Where multiple readings for
depth, alkalinity, and substrate were available, they were averaged. 16 sites did not have
either depth or alkalinity data, so RIVPACS could not be run for these sites. The RIVPACS
outputs were the most probable RIVPACS group (4, 9, and 35 categories) and RIVPACS
expected LIFE scores for spring, summer, and autumn samples. The four categories were also
merged into three (1, 2&3, 4) and two (1-3, 4) categories for comparative analysis. The
Institute of Hydrology’s low flow quality classification was also added for each gauging
station. This consists of two codes, each labelled A to C. The first code is for hydrometric
sensitivity to low flows, the second for degree of artificial influences. Only the latter has been
used in this project; it is calculated from gauged flow data and the magnitude of licensed
upstream abstractions and discharges (Table 2-1). There are clearly some limitations with this
classification, the grade does not distinguish between net positive and net negative influences,
and is based largely on licensed quantities, not actual amounts.

Table 2-1. Institute of Hydrology artificial influences classification

Artificial influences grade Difference between gauged and
natural Q95 ratio (per cent)

A <20
B 20-50
C >50

2.3 Functions of the database

The database was used to match flows to LIFE scores via the paired sites table, and to
produce tabular files suitable for statistical analysis. Some pre-processing of data was also
carried out by the database, including restriction of sample occasions to particular parts of the
year, selection of sites with more than a certain number of samples, exclusion of flow records
with significant missing values, and calculation of standardised flow statistics.
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2.4 Abbreviations and factor codings

IPS, IPW (with a flow variable): immediately preceding summer, winter
YBS: year before summer
z (e.g. IPSQ95z): flow indices normalised as z scores (i.e., by subtracting the mean value of
the index for that station and then dividing by the standard deviation (SD) of the index for that
station)
dMEAN (e.g. IPSQ95dMEAN): flow indices standardised by dividing by the mean flow for
the station
CAT.AREA: catchment area
CURRAI2: current artificial influence class, merging categories A and B together
BFI: base flow index
RIVGRP4,9,35. Most probably RIVPACS group of sample, at the 4, 9, or 35 category level.
SMB: six months before – used in combined spring and autumn analyses
SMBT: six months before that ( i.e. 7-12 months before sample) – used in combined spring
and autumn analyses

Regression models are shown in Wilkinson and Rogers (1973) notation.
For example LIFE ~ A + B + A:B models LIFE score predicted by two variables, A and B,
plus an interaction term which can be considered as A multiplied by B, plus an error term. A
and B can be factors (a set number of levels) or continuous variables.

2.5 Data excluded from analysis

Around 5 per cent of the macroinvertebrate data-set was bankside sorted rather than
laboratory sorted. This is largely data from Environment Agency North West Region. On
advice from the Environment Agency, these data were excluded from most of the subsequent
analyses.

For the calculated seasonal flow statistics, a season was excluded if more than 20 days were
missing data in the 180 day period. This was a pragmatic decision, rather than based on any
objective criteria; the 20 day period was chosen after looking at the impact (in terms of
number of matched flow-sample combinations) remaining after varying the period from 0 to
40 days.
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3 Exploratory (graphical and tabular) data analysis

The sequence of analysis was as follows:
• Initial exploratory graphical analysis (described in this section).
• Statistical analysis (described in the next section).
• Further, more targeted graphical analysis. This generally used a data-set of autumn

LIFE scores (samples taken in September, October, and November) and flow indices
from the 6 months preceding the sample. These graphs are also presented in this
section.

This led to the discovery of some further anomalies in the matching of flow and LIFE score
data. The anomalous sites were removed from the data-sets used in the subsequent analyses.

3.1 Regional distribution of sites

There is some geographical variation in coverage, with around 60 sites available from
Anglian, North East, and Southern Regions, and hardly any sites in the South West and Welsh
Regions (Table 3-1).

Table 3-1. Total number of sites and mean LIFE score by Region

Region Number of sites Mean LIFE score
ANG 60 6.62
MID 44 7.08
NE 58 7.15
NW 32 7.63
SO 59 6.77
SW 1 7.48
TH 34 6.78
WEL 2 7.43

3.2 Time series of LIFE scores

Time series of LIFE scores were plotted for each region, and a smoothed regression line over-
plotted. These are illustrated in the A4 graphs in Appendix C, in which the horizontal axis
illustrates the date (year) since 1990. This highlights:

• there are sites with data points not evenly distributed through the period of record
(these generally have most data in the later years of the period);

• individual sites may exhibit broad upward, downward, or neutral trends;
• individual sites show varying degrees of scatter of LIFE scores – some are more

variable than others.

For each site, individual time series of autumn LIFE scores (samples taken in September,
October, and November), were plotted along with Q10 and Q95 for the immediately
preceding summer.
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3.3 LIFE scores versus key flow variables and anomalous sites

Scatter plots of LIFE score versus key flow variables were plotted. Following the initial
analysis presented below, the plots shown here in the Appendix C are restricted to showing
the relationships between autumn LIFE scores (samples taken in September, October, and
November), and Q10 and Q95 flows for the immediately preceding summer. Graphs are
shown for ranked flow statistics, flow statistics standardised by mean flow, and normalised
statistics.

All sites were classified according to whether their autumn LIFE scores showed positive,
negative, or no correlation with the LIFE score. All sites and data were then re-examined by
CEH and Environment Agency staff, and several were identified as not being suitable for use
with the LIFE methodology – these included:

• sites on silty slow-flowing rivers (LIFE is not designed to work on such systems,
which will not show shifts in the composition of taxa responding to velocity and
siltation);

• sites with intermittent water-quality problems (at such sites, any water-quality issues
are likely to affect the LIFE score and confound any flow–LIFE relationship);

• sites with large changes in regime downstream of reservoirs – such sites were
demonstrated by Extence et al. (1999) to show atypical LIFE responses to flow and
are unlikely to fit a generic model.

The excluded sites are summarised in Table 3-2. Other data points were excluded as they may
have been over-sampled, notably in the late 1980s and early 1990s. Data were not excluded
simply because they did not fit a perceived model of response, hence there are a few sites in
the data-set where response of LIFE score to flow looks either negative or zero.

Table 3-2. Paired sites excluded from the analysis

Site Station Why excluded?
1924 25023 Mismatch,  upstream and downstream reservoir
224 27005 Low variability Grimwith Reservoir

50349 28023 Long-term quality problem
49017 28058 CEH excluded as obtaining variable life scores, but zero

flows
55425 30001 Buffering of sewage treatment works and quality
55339 30006 Ponded
55539 31001 Regulated flow
55588 31006 Regulated (CEH decision)
55714 31016 Regulated flow
55854 32002 Regulated flow
55598 32003 Quality
56000 33014 Engineered, poor habitat
56439 33015 Quality
56261 33022 Quality
55953 33034 Sluggish lowland
56262 33039 Sluggish, deep
56435 33058 Quality
55932 33063 Sluggish lowland
54641 37024 Sluggish lowland river
36065 39016 Deep and slow
35829 39078 Water quality problems
35830 39078 Possible water quality problems
43417 40008 Sluggish?



Science Report Producing Generalised LIFE Response Curves 17

Site Station Why excluded?
43697 40025 Deep and silty
41930 41001 Silty and deep
42787 41010 Silty and deep
42793 41019 Water quality problems
42205 41024 ds reservoir
46902 54001 Deep and silty

3.4 Scatter plots between different standardised flow variables

Clearly, the magnitudes of non-standardised flow variables (e.g., Q10, Q50) for the same or
successive time period are correlated, but it is less clear how correlated their standardised
equivalents will be. Figure 3-1 illustrates that there is a degree of correlation for low flows
over successive summers. Figure 3-2illustrates the correlations between standardised Q10,
Q50, and Q95 in the same summer – it suggests that correlation between Q10 and Q95 is
slight.

Figure 3-1. Correlation between normalised (left) and standardised (right) and Q10 (upper) and Q95
(lower) for successive years.
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Figure 3-2. Scatter plots between standardised explanatory summer flow variables.

3.5 Temporal correlation of LIFE scores

This particular issue was raised in the specification of work, some temporal autocorrelation is
likely between successive samples taken at the same site, which needs to be taken into
account in any subsequent statistical analysis. Temporal autocorrelation in LIFE scores is
likely to arise from two sources:

• Temporal autocorrelation in the underlying flow data, which influences LIFE scores.
As long as the correct flow variables are chosen, this is minimised by simply
constructing a good model to predict LIFE from flow.

• Lag in the response of the macroinvertebrate community to any changes in flow. The
extent of this effect can be characterised by examining autocorrelation in the residuals
of any model that predicts LIFE from flow. Autocorrelation of this type represents
variation that cannot be explained using the physical explanatory variables. For
regularly spaced time-series data, simple auto-regressive models can be explored.
However, in this study, because there are generally missing years in each LIFE time
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series, such methods would be very difficult to apply. If such autocorrelation is
significant, characterising flow-related ecological stress from a single year of sample
data is error-prone.

If autocorrelation is present, hypothesis tests should not be made on the basis that the samples
are completely independent, and the statistics associated with the regression coefficients will
look artificially high. Figure 3-3shows the relationships between spring and the following
autumn, autumn and the following spring, autumn and the following autumn and spring and
the following spring. The data shown in the spring–autumn and autumn–spring graphs are
mostly, but not exclusively, the same because of the incomplete nature of the time series.
Figure 3-4illustrates the temporal correlation for autumn LIFE observed/expected (O/E)
scores for the three base flow index (BFI) categories (low, 0.4; medium, 0.4-0.7; high, >0.7)
used in the subsequent analysis.

Figure 3-3. Temporal correlation in LIFE O/E scores.



Science Report Producing Generalised LIFE Response Curves20

Figure 3-4. Temporal correlation in autumn LIFE O/E scores for three BFI categories (see Section 4.5).

3.6 Subsets of data used in subsequent analysis

Clearly, the overall data-set is fairly large, with approximately 7359 macroinvertebrate
samples since 1 January 1989, but it is difficult, if not impossible, to analyse the data together
in a linear model. When the data were restricted to samples with matching summer flow
statistics, the samples reduce to 4008, and selecting particular seasons (e.g., autumn) reduces
this figure further. Hence a number of subsets of data were selected for further analysis as in
Table 3-3.
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Table 3-3. Main subsets of data used in analysis

Subset
ref.

Description Number of
records

0 All data, not used for any single analysis 7359
1 Autumn samples with matching flows from the preceding summer.

Minimum of five data points over 14 years
1533

2 As subset 1, but including matching spring samples 1222
3 As subset 1, but with matching flows from three preceding seasons

(preceding summer, preceding winter, and summer from year before)
1482

4 As subset 3, but including matching spring samples 1182
5 Both autumn and spring samples, matched to flow data 1-6 and 7-12

months before sample
2874
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4 Regression analysis

4.1 Introduction

After the initial exploratory analysis, we simplified the first round of investigation of the
relationship between LIFE O/E and river flow. It was clear that the significant intra-annual
variation in score would be difficult to take into account in a simple regression model. It is
plausible that different mechanisms affect macroinvertebrate response to flow at different
times of year, and a model that incorporated differing flow indices depending on season
would be fairly complex. Furthermore, the requirement of the project was to look for
relationships between simple, seasonal (summer, winter) flow indices.

Thus, the first analysis was restricted to autumn LIFE O/E as the response variable. Making
this restriction also reduced autocorrelation in the response variable to some extent. It was
postulated that low flow stress would be greatest in the autumn period, as autumn samples
would integrate the effects of flows and flow events throughout the summer. For each sample,
gauged Q10, Q50, and Q95 statistics were extracted from the database and matched for the
immediately preceding summer (coded IPS), the immediately preceding winter (coded IPW),
and the summer of the year before (coded YBS).

We developed a set of multiple regression models to predict autumn LIFE O/E to standardised
flow exceedance variables (Q10, Q50, and Q95) from the years that contained and preceded a
sample. The flow variables used represented roughly2 0-180 days before the sample
(immediately preceding summer), 180-360 days (preceding winter) and 360-480 days
(summer of year before).

Model variables were selected and tested using a combination of stepwise backward selection
from a larger model, combined with a common sense view of the processes likely to occur.
The primary test of the model was the magnitude of the adjusted R²; this is a model R²
penalised to favour simpler models over more complex ones. When important variables are
mentioned below, they are positively related to LIFE O/E except where stated otherwise.

Non-linearity in the response between LIFE O/E and flow, particularly at lower flows and
LIFE values, was tested by inserting quadratic terms into the model. These were not, in
general, significant.

4.2 Standardising flow variables

A key issue that had to be addressed at the outset of the analysis was to allow the analysis of
LIFE score against flow across many sites. Clearly sites with a greater catchment area and/or
greater rainfall have greater mean flows, which is reflected in their greater channel
dimensions. However, the postulated mechanism through which LIFE score is linked to flow
is largely based on sensitivity to water velocity and siltation, driven by flow variability and

                                                
2This is not exactly the case as the autumn samples were taken over the period September, October, and
November, but this ± 1 month discrepancy should not affect the overall results too much or in any systematic
way.
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channel dimensions. As no data on channel dimensions are available, flow variables at a site
must be standardised to make them comparable. Four approaches were tested.

Divide by long-term mean flow
This is the simplest approach, although outputs are potentially sensitive to the length of the
long-term period of record. Rivers with a flashy regime or large difference between
magnitude of high and low flows will continue to have a considerably wider range of values
than less flashy or baseflow-dominated rivers. Similarly, high-flow indices (such as Q10)
naturally have a greater range than low flow indices (such as Q95).

Normalise flow statistics
An alternative to the above, normalisation of a set of statistics converts a set of flow statistics
for a site into a common range with a mean of 0 and a SD of 1. The sample mean of the
statistics ( x ) is subtracted from the statistic (e.g. summer Q95 for 1994), which is divided by
the sample SD of the statistics (s):

s
xxz −

=

This standardises both the overall magnitude of flow and the variability, but is not such a
severe standardisation as is the ranking of flows (see below).

Rank statistics over standard period
Table 4-1 shows an example of summer Q95 ranks. Ranking forces the flow data to a
common scale regardless of the range or flashiness of the regime. The majority of sample
sites did not have samples taken in every year, but this did not affect the ranking process,
which was always carried out on the standard period of the record. Ranking the flow data was
used in the initial data analysis, but was not used for the final analysis using the revised data-
set updated to 2003.
Table 4-1. Example of ranking flow data for gauging station 347: Wharfe at Flint Mill, Weatherby

Year
Summer Q95

(m³/s) Rank
1995 1.797 1
1996 2.015 2
1990 2.120 3
1994 2.128 4
1992 2.131 5
1991 2.250 6
1997 2.598 7
1999 2.820 8
1993 3.137 9
1998 3.790 10

Include long-term mean flow as a term in the analysis
The approach of dividing flow by long-term mean flow is equivalent to predicting flow by the
long-term mean with a coefficient of 1 and intercept through the origin. However,
standardisation is simply a mechanism for coping with morphological scale effects, which
may not scale in such a simple manner. For example, hydraulic geometry theory suggests that
upstream and/or downstream changes in water depth, velocity, and width are governed by
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flow changes and power laws with exponents that always sum to 1. If velocity is the major
mechanism that actually links flow changes to LIFE score changes, one would expect
alternative standardisation coefficients and intercepts to reflect actual hydraulic geometry
exponents for velocity. With the data available in this project, this can be mimicked by
including non-standardised flow and long-term mean flow as separate coefficients in the LIFE
score regression model.

4.3 Standardising LIFE scores

Two approaches to standardising the LIFE score response were tested – firstly, LIFE scores
were divided by the mean score for each site and, secondly, LIFE scores were divided by the
RIVPACS expected LIFE score for the site (LIFE O/E). The former approach gives better
regression-line fit than the second, but it is much less useful as a practical modelling tool.
Thus most results are presented using the LIFE O/E data as the response.

Standardisation by O/E retains some variation in mean score, because expected LIFE score
does not correspond to the mean LIFE score, partly through a RIVPACS model error and
partly through inter-site differences in the levels and effects of abstraction and other flow-
related stresses. Efforts to explain the residual variation in the O/E model are illustrated
below.

4.4 Analysis using autumn data only

Firstly, separate regressions were carried out for each site separately. There were many
positive relationships, but for most the slope was not statistically significant. When the data
were pooled together with standardised flows, the relationships were highly significant and
positive. Stepwise regression with backward selection was used with nine explanatory flow
variables (Q10, Q50, and Q95 from the IPS, IPW, and YBS periods). This represents three
non-overlapping periods of 0-180, 181-360, and 361-540 days before the samples. Not
surprisingly, standardising LIFE score by each site’s mean LIFE score gave a better model fit
than standardising by RIVPACS expected LIFE score, but most of the results below are for
LIFE O/E as this is the more practical indicator.

Both standardised Q10 and Q95 flow variables offered significant predictive power, while
Q50 did not. In several cases, Q10 explained more variation in LIFE O/E than did Q95.
However, this could, in part, arise because Q10 varies in magnitude more than Q95 does. This
is supported by results that show a greater influence of Q95 compared to Q10 when using the
normalised statistics rather than standardised (flow/mean flow). Residuals from all
regressions are well distributed with no indication of heteroscedasticity (variance increasing
with the mean) or non-normality (Figure 4-1) – this applies to the regressions in the following
sections as well.

When relating LIFE O/E to flow, adding the IH Report 108 artificial influences index
significantly improved the model fit, which indicates at a very crude level that regulation by
abstractions and discharges depresses the LIFE score. Across all autumn samples, sites linked
to category A and B gauges (natural or slightly influenced) gave a mean LIFE O/E of 0.994,
while category C (more heavily influenced) gave a mean LIFE O/E score of 0.975. The
results of adding this as a two-category factor (CURRAI2: level 1 = A or B, level 2 = C)
interaction term are extremely interesting (Figure 4-2). There is a common slope for the
LIFE–Q95 relationship, regardless of artificial influence. However, for Q10, there is an
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interaction (IPSQ10z:CURRAI2) with a considerably increased slope for category C sites
(Model 1):

LIFE.Y ~ IPSQ10z + IPSQ95z + CURRA12 + IPSQ10z : CURRAI2 (Model 1)

Figure 4-1. Residuals distribution for LIFE ~ IPSQ95 + IPSQ10 + CURRAI2

Figure 4-2. Relationship between LIFE O/E and summer Q10, Q95 plus artificial influences index. Blue
line indicates category A or B, red line indicates category C.
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As would be expected, adding the artificial influences index to any model already
standardised by each site’s mean LIFE score is not fruitful as all inter-site differences in mean
LIFE score have already been eliminated. Since this is an observational study, rather than a
designed experiment, it is clearly not possible to demonstrate a causative link; it could easily
be some other aspect of the category C catchments that causes depressed LIFE scores. Given
that improved representations of abstraction pressure are being developed, this clearly offers a
fruitful line for further enquiry.

The effects of BFI and RIVPACS group as predictors are discussed in the following sections.

4.5 Effects of base flow index

The stability or variability of flows at a site might be expected to influence the strength and
nature of relationships between the macroinvertebrates (and hence LIFE) and flow variables.
Base flow index (BFI) is a simple measure of the stability of a flow regime, derived from the
flow data record by separating flow into ‘quickflow’ and ‘baseflow’. It can also be estimated
reliably from catchment geology and soil characteristics. An extensive modelling exercise
was undertaken to test how variations in BFI might link to LIFE score. This included testing
interaction terms between BFI and other explanatory variables and also using generalised
additive models (GAMs) and the effect of BFI as a spline function (i.e., a series of smoothly
joined polynomial curves), while constraining other predictor variables as linear. The latter
models test whether there is any non-linear trend between BFI and LIFE O/E, after the effects
of other model variables are taken into account. BFI variation does clearly have an effect, but
the pattern is complex. Three patterns have become apparent:

1. There is a better relationship between flows (as defined in this project) and LIFE in
low baseflow catchments compared to high baseflow catchments.

2. The GAM model suggested similar responses, whether normalised or standardised
flows were used (Figure 4-3, Models 2 and 3). The results suggested three BFI
categories – BFI < 0.4 (no relationship between BFI and LIFE), 0.4 ≤ BFI ≤ 0.7
(positive relationship), and BFI > 0.7 (no relationship). These classes are termed low,
medium, and high BFI below. These categories were used to develop sub-models of
LIFE response to flow, described below.

3. Using BFI as an interaction term with flow variables indicated that the rate of decrease
of LIFE score with higher winter Q10 value is greater in catchments with a high BFI.
There could be any number of reasons for this. For instance, BFI could be correlated
with habitat quality, which could indicate a lack of refugia in more engineered
lowland rivers. Alternatively, it could represent reduced macrophyte cover following
winter high-flow events.

LIFE O/E ~ IPSQ95z + IPSQ10z + IPWQ95z + IPWQ10z + CURRAI2 + s(BFI) Model 2
LIFE O/E ~ IPSQ95dMEAN + IPSQ10dMEAN + IPWQ95dMEAN + IPWQ10dMEAN +
CURRAI2 + s(BFI) Model 3

where s(BFI) is a spline curve function of BFI that describes its relationship with LIFE
O/E after allowing for the effect of flow variables (Figure 4-3).



Science Report Producing Generalised LIFE Response Curves 27

Figure 4-3. Relationship based on splines between BFI and LIFE score when using normalised flows (left-
hand graph) and /mean flows (right-hand graph).

Simple univariate regressions between LIFE O/E and immediately preceding normalised Q95
and Q10 are given in Figure 4-4.
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Figure 4-4. Simple univariate relationships between LIFE O/E and Q95 (left) or Q10 (right).

Finally, Table 4-2 and Table 4-3 illustrate the magnitude of the univariate regression
coefficients for both normalised and standardised flow data. In both cases, there is a trend for
the higher BFI sites to have slopes that are less steep, although this trend is enhanced, perhaps
not surprisingly, when the flow data are standardised by dividing by mean flow.
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Table 4-2. Slopes of univariate response of LIFE O/E to normalised flow for different BFI categories

BFI category Slope of response for Q95 Slope of response for Q10*
<0.4 1.12 0.69 ns
>0.4 and <0.7 1.01 0.73
>0.7 0.98 0.56 ns

*ns indicates parameter not significant at p = 0.05.

Table 4-3. Slopes of univariate response of LIFE O/E to standardised flow for different BFI categories

BFI category Slope of response for Q95 Slope of response for Q10
<0.4 0.27 0.030
>0.4 and <0.7 0.18 0.024
>0.7 0.05 0.018

4.6 Number of flow variables
Without the incorporation of a ‘site’ factor (see below), there was no clear consistent pattern
between BFI and the strength of the relationship between LIFE and the various preceding
flow variables. Following the results of Extence et al. (1999), one would expect that higher
BFI sites to show stronger relationships with the longer-lagged flow variables (particularly the
summer of the year before). In all cases the strongest (as measured by slope) and best fitting
(as measured by standard error of slope) relationships were found with flow variables that
closely preceded the sample (i.e., summer variables that preceded autumn samples). For the
highest BFI sites, there were generally fewer significant variables – using normalised flows,
for BFI >0.7, only one flow variable (preceding summer Q95) was significant, whereas for
BFI <0.4, summer and winter Q10 and Q95 were all significant. The significant flow
variables found are summarised in Table 4-4.

Table 4-4. Significant flow variables for models predicting LIFE O/E in three separate BFI categories

Model BFI class Adj R² CURRAI2 IPSQ95 IPSQ10 IPWQ95 IPWQ10 YBSQ95 YBSQ10
Results using normalised flows

4 <0.4 0.18 Y Y Y Y Y
5 0.4-0.7 0.21 Y Y Y Y
6 >0.7 0.12 Y Y

Results using standardised flows
7 <0.4 0.23 Y Y Y Y Y
8 0.4-0.7 0.21 Y Y Y Y
9 >0.7 0.13 Y Y Y Y

NB samples matched to preceding flows only, not spring LIFE scores as well.

4.7 Catchment characteristics, RIVPACS groups, and site

It is simple to add a site factor to represent all unexplained between-site variation in site mean
LIFE O/E score. When this is done, regression adjusted R²s increase dramatically (from 0.1-
0.3 to around 0.6). Regression residuals are also well behaved (Figure 4.5). For normalised
flows, preceding summer Q10 and Q95 are most significant, followed by winter Q95.
Previous summer Q95 has a weakly discernible effect (Table 4-5).

With three models representing low, medium, and high BFI, the adjusted R² is similar, not
surprisingly as the BFI effect is included in the effects of’ site’. In each case both the
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preceding summer Q10 and Q95 are still the major controlling variables (Table 4-5).
However, for low and medium BFIs, winter Q95 is also significant. For low BFI, winter Q10
is significant (positive relationship), but with high BFI, winter Q10 has a negative relationship
with LIFE O/E. For medium and high BFIs, Q95 from the summer before has a weak effect.
These results, while not conclusive, provide some evidence for a longer lag in the correlation
of low flows with LIFE scores on more permeable catchments. However, across all BFI
categories, the majority of the controlling effect is provided by flows in the immediately
preceding 6 months. It also highlights the opposite effect of high winter flows on LIFE score
on high compared to low baseflow catchments. These effects are subtle and are not seen when
the SITE ID factor is omitted, as they are masked by the greater unexplained variability in
LIFE O/E.

Table 4-5. Significant flow variables for LIFE O/E models that include a Site ID factor for sites in three
separate categories of BFI, and for all sites analysed together

Model BFI class Adj R² IPSQ95 IPSQ10 IPWQ95 IPWQ10 YBSQ95 YBSQ10
10 All together 0.61 Y Y Y Y#

11 <0.4 0.63 Y Y Y Y
12 0.4-0.7 0.61 Y Y Y Y#

13 >0.7 0.63 Y Y Y* Y#

*Coefficient negative.
#Coefficient included by stepwise regression, but partial p >0.05 (i.e., weak effect).

Figure 4-5. Regression diagnostic plots for model with Site ID factor

For flows standardised by mean flow, again for high BFI sites, winter Q10 is again negatively
associated with LIFE, but the preceding summer Q95 is not significant. For low BFI sites, the
year before summer Q10 replaces winter Q95 in the model. These results may simply show
that, overall, high flows have more control on LIFE scores because they vary in magnitude
more than low flows do.

A site factor may be added as an interaction term to various flow terms, which is equivalent to
separate regression models for each site, with slope and intercept being allowed to vary.
These models do have to be kept simple though, to aid interpretation and to not use large
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numbers of degrees of freedom. In practice, the site-by-flow interaction is not significant,
which indicates that there is no evidence that the different sites have different slopes of
response of LIFE score to flow. This could, at least in part, result from the relatively small
numbers of data points available to estimate the relationship for each site (between five and
14).

In general, catchment, site characteristics (e.g., catchment area, water width), and RIVPACS
group (2, 3, 4 categories) did not add major explanatory power to the LIFE O/E models. In
particular, RIVPACS group did not seem to affect the slope of response of LIFE score to
flow. One exception was that when RIVPACS group was set to two categories (separating out
lowland streams), and used to predict mean-standardised LIFE score (STD_LS).

STD_LS ~ IPSQ10z + IPSQ95z + RivGrp2 (Model 14)

The lowland streams had higher mean-standardised LIFE scores than the non-lowland
streams.

The lack of clear relationships with RIVPACS group for the LIFE O/E data could have been
because of the over-riding unexplained variation in mean LIFE score. However, it is still
difficult to see any relationship when LIFE was standardised by mean site LIFE score. Thus,
either a relationship is simply not evident with this data-set, or a relationship is being masked
by some atypical sites.

4.8 LIFE score versus ASPT

In the initial phase of analysis (using 1990-1999 data), the prediction of standardised APST
score and standardised LIFE score by flow was compared. The ASPT score is calculated in a
comparable manner to the LIFE score, but does not take into account observed abundances,
and each taxon is weighted by its perceived sensitivity to organic pollution. Before the
publication of the LIFE method, ASPT score had been used to index the response of the
macroinvertebrate community to flow (Armitage and Petts, 1992; Brown et al., 1991). In the
current study data-set, the adjusted R² was 0.09 for predicting ASPT using ranked flow data,
compared to 0.35 for predicting LIFE. Thus, LIFE score is more closely related to flow
variation than is ASPT, as intended.

4.9 Use of spring scores as a predictor of autumn scores

Spring LIFE O/E scores are strongly correlated with autumn LIFE O/E scores. Adding spring
LIFE O/E to the model that predicts autumn LIFE O/E gives statistically significant
improvements to the fitted models, with adjusted R² values of 0.37, 0.43 and 0.47 for the three
BFI categories. This suggests greater intra-annual lag in the community response within the
higher BFI catchments. Table 4-6 illustrates the R² values for a selection of models that
predict LIFE score in the autumn from LIFE score in the spring plus normalised flows.
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Table 4-6. Comparison of R² values for models with and without OELIFE_SPRING and SITE.ID

Model Model form Adjusted R²
14 LIFE.Y ~ IPSQ10z + IPSQ95z + SITE.ID + OELIFE_SPRING 0.617
15 LIFE.Y ~ IPSQ95z + SITE.ID + OELIFE_SPRING 0.616
16 LIFE.Y ~ IPSQ95z + OELIFE_SPRING 0.423
17 LIFE.Y ~ IPSQ95z + SITE.ID 0.585

4.10 Both spring and autumn samples together

A data matrix was constructed with both spring and autumn LIFE O/E scores as response
variables, predicted by flows in the appropriate preceding 6 months and the 6 months before
that (i.e., 7-12 months before the sample was taken). A two-level factor SEASON identified
whether the data point was spring or autumn, and this was used as an explanatory variable in
the model. The flow variables that represented 7-12 months before offered no additional
predictive power so were dropped, The adjusted R² of this overall model was 0.10. The season
factor was significant and indicated that there are, on average, higher LIFE O/E scores in
spring than in autumn, even controlling for the fact that flows are higher in winter than in
summer. In contrast to the previous analysis using 1990-1999 data, the slope of response to
flow was no different for spring and autumn samples (i.e., there was no flow–season
interaction to the response). A GAM model suggested the same three BFI categories as
determined for the autumn data alone, giving adjusted R²s for low, medium, and high BFIs of
0.13, 0.19, and 0.13, respectively. On average, higher BFI corresponds to higher LIFE O/E.

LIFE.Y ~ SEASON + SMBQ95z + SMBQ10z + CURRAI2 Model 18
LIFE.Y ~ SEASON + SMBQ95z + SMBQ10z + CURRAI2 + s(BFI) Model 19

where s(BFI) is a spline function of BFI effect of order 5.

4.11 Adding mean flow as a term in the model

The addition of mean flow was suggested in the original brief, and was tested by comparing
the models that predicted unstandardised LIFE score:

LIFE ~ ELIFE3 + log(IPSQ95dMEAN) + log(IPSQ10dMEAN) Model 20
and

LIFE ~ {ELIFE3 – log(MEANFLOW)} + log(IPSQ95RAW) + log(IPSQ10RAW) Model 21

Adjusted R² was 0.55 for the first case, and 0.35 for the second. These R² values cannot be
compared to the values for the models that predict LIFE O/E – for the simple model LIFE_F ~
ELIFE3, the R² is 0.48.

4.12 Autocorrelation in LIFE scores

In Section 3, as the extent to which successive autumn LIFE O/E values are correlated is
demonstrated, and this correlation is shown to be greater in higher BFI catchments. As
discussed above, there are at least two separate sources of autocorrelation, arising from the
controlling flow data and from lag in the community response. To test this, the residuals from
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models 4-6 (basic models in the three BFI classes) and model 10 (model with a ‘site’ factor)
were extracted. For models 4-6, the residuals were standardised by their mean value on a site-
by-site basis, to remove any spurious correlations caused by differences in LIFE O/E.3

Where a sample could be matched with a sample from the following year at the same site, the
residual was matched to the residual for the subsequent year. Residuals were then correlated
against residuals for the subsequent year. The results are presented in Table4-7, along with
information on the correlation of LIFE scores.

Table 4-7. Correlation between successive autumn LIFE O/Es and for residuals from models that predict
autumn LIFE O/Es from flows

BFI
category

Correlation R² between
successive autumn LIFE
O/Es (data matched to flow
variables)

Correlation R² between
successive autumn LIFE O/Es
(data not matched to flow
variables): larger data-set

Correlation R² between
successive model residuals,
standardised by their site
mean values

<0.4 0.26 0.33 0.036
0.4–0.7 0.42 0.41 0.023
>0.7 0.50 0.53 0.013

The correlation R² for these analyses were extremely low (less than 0.04). This result is
important as it suggests that autocorrelation between successive autumn LIFE O/E values is
largely caused by autocorrelation in the flow statistics.

4.13 Data from the North West Region

Bank-sorted data from the North West Region were excluded from the above analysis.
However, it was thought useful to test the relationship between LIFE score and discharge in
this region. Matching autumn samples to flows the immediately preceding summer gave 72
data points from 13 rivers, whereas matching autumn samples to flows in the preceding 18
months gave 55 data points from the same 13 rivers. Stepwise regression with backwards
selection was used to fit a model, and further terms were deleted by hand (Table 4-8).

Table 4-8. Models for the North West Region

Model Model form Adjusted R² Figure
22 LIFE.Y ~ IPSQ10z + IPSQ95z + BFI 0.31 Figure 4-6
23 LIFE.Y ~ IPSQ10dMEAN + IPWQ95dMEAN +

YBSQ95dMEAN
0.40 Figure 4-7

The artificial influences indicator could not be included for the North West Region as there
were no class C (highly influenced) gauges.

                                                
3The same thing could be accomplished by using LIFE/(mean site LIFE score) as the response variable, which
again removes inter-site differences in mean LIFE score.
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Figure 4-6. Relationships between normalised flows, BFI, and LIFE O/E for North West Region rivers,
together with the fitted regression lines (for average values of the other predictor variables).
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Figure 4-7. Relationships between flow (standardised by mean flow), BFI, and LIFE for North West
Region rivers, together with the fitted regression lines (for average values of the other predictor
variables).

As a contrast, this exercise was repeated for the North East Region. Using normalised flows,
this gave a best model of:

LIFE.Y ~ IPSQ10z + IPSQ95z + BFI + CURRAI2

and an adjusted R² of 0.13. Using flows standardised by mean flow the best model was:

LIFE.Y ~ IPSQ10dMEAN + IPWQ95dMEAN + BFI + CURRAI2

and roughly the same goodness of fit with an adjusted R² of 0.12.
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5 Sampling variation in observed LIFE

5.1 Introduction

Uncertainty in observed LIFE values because of replicate macroinvertebrate sampling
variation and within-season variation in observed LIFE influences the precision of any
assessments of flow-related stress at river sites based on the O/E ratio of observed (O) to
RIVPACS site-specific expected (E) values of LIFE.

Variation in observed LIFE through sampling variation also limits the maximum potential
strength of the relationship between observed life and any critical flow parameters.

Therefore, it is important to have an estimate of the variance in LIFE between replicate
samples taken on the same day, and of the variance between macroinvertebrate samples taken
over the same seasonal period at any one site that are all associated with the same value of the
flow statistic (e.g., summer Q10 or Q95).

5.2 Overview of biological assessment methods study results

Furse et al. (1995) conducted a detailed investigation of the effect of replicate sampling
variation on the observed values of BMWP score, number of BMWP taxa, and ASPT. This
designed study was carried out at 16 sites – four RIVPACS major stream types at each of the
four NRA 1990 River Quality Survey (RQS) biological quality grades. Both CEH and the
Environment Agency refer to these sites as the BAMS (Biological Assessment Methods)
sites. At each BAMS site in each of the three RIVPACS seasons –‘spring’ (March–May),
‘Summer’ (June–August) and autumn (September–November) – three replicate samples were
taken, two by one person and a third by a second person. Clarke et al. (2003) summarised the
analysis and results. Replicate sampling variation in ASPT was found to be roughly constant;
it did not depend on either the physical type or biological quality of the site, but only on
whether the ASPT was based on single-season samples or on combined samples from two or
three seasons (Table 5-1). By working with the square root transformed values of BMWP
score and of number of BMWP taxa, their replicate sampling SDs were also found to be
roughly constant, depending only on the number of seasons involved (Table 5-1).

Table 5-1. Overall estimates of replicate sampling SD for the square root of number of BMWP taxa (√T),
the square root of BMWP score (√S), and of ASPT – taken from Clarke et al. (2003).

Seasons involved
in overall sample √T √S ASPT

1 0.228 0.588 0.249
2 0.164 0.418 0.161
3 0.145 0.361 0.139

As part of the previous R&D study to investigate the relationship between the LIFE index and
RIVPACS (Putting LIFE into RIVPACS), Clarke et al. (2003) used the replicate samples
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macroinvertebrate community data at the BAMS sites to investigate the effect of replicate
sampling variation on observed LIFE values. They found that replicate sampling variation did
not appear to vary systematically between different types of site or between seasons.
Sampling variance in LIFE did not appear to increase systematically with the mean of the
replicate LIFE values.

However, Clarke et al. (2003) did find that the replicate sampling SD of LIFE did decrease
with the average number of LIFE-scoring families involved in calculating the replicate values
of LIFE for that site-season combination (Spearman rank correlation = –0.54). The highest
values of SD (i.e., >0.5) all occur when the replicate values of LIFE are based on an average
of less than five families. At the other extreme, when the average number of LIFE-scoring
families found in replicate samples is at least 15, the sampling SD is always relatively small
(i.e., <0.2).

Based on the BAMS data-set, the relationship between replicated sampling SD of LIFE and
the number (NLIFE) of LIFE-scoring families present is best estimated by a linear regression
relationship between log SD and NLIFE (Figure 5-1), which is statistically significant (r = –
0.68; p = 0.001) and given by (standard errors of regression coefficients given in brackets):

loge SD  =  –0.528 – 0.1154 NLIFE (5.1a)
              (0.224)    (0.0180)

which can be re-written as:

sampling SD = 
LIFEN)8945.0(590.0  (5.1)

Equation (5.1) can be used to provide an estimate of the unknown replicate sampling SD for
any site using just the observed number of LIFE-scoring families present in a single sample;
examples are given in Table 5-2. The BAMS study estimate of the overall average replicate
sampling variance of LIFE was 0.1064, giving an average replicate sampling SD of 0.326.
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Figure 5-1. Relationship between SD of the three replicate values of LIFE for each season at each BAMS
site and the mean number (NLIFE) of LIFE-scoring families present in each replicate. Figures (a) and (b)
show SD on logarithmic and untransformed scales, respectively. Fitted lines are based on Equation (5.1).
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Table 5-2. BAMS-study estimate, based on Equation (5.1), of replicate sampling SD of observed LIFE for
sites where NLIFE LIFE-scoring families are present in a sample.

Number of LIFE-scoring families present
(NLIFE)

Sampling
SD

1 0.528
2 0.472
3 0.422
4 0.378
5 0.338
6 0.302
7 0.270
8 0.241
9 0.216

10 0.193
12 0.155
15 0.111
20 0.063
25 0.036

Average BAMS sampling SD 0.236

Thus, the BAMS study information can be, and has been, used to provide estimates of the
susceptibility of biotic indices, such as BMWP score, number of BMWP taxa, ASPT, and
LIFE, to variation caused by differences between replicate RIVPACS samples in their
macroinvertebrate community composition and abundances. Although variation between
replicate samples is likely to be the major source of variation and uncertainty in biotic index
values at a site within a RIVPACS season, there is also additional within-season temporal
variation in the sampled macroinvertebrate community and hence in the index values. The
aim of the current study is to use any available data on sites for which more than one
macroinvertebrate sample was taken in the same RIVPACS season, but not necessarily on the
same day.

5.3 Data available for analysis of within-season variation

CEH were provided with the observed values of LIFE based on macroinvertebrate family-
level composition for a total of 8241 samples over the period 1974-2003. Samples came from
a total of 289 sites, with the total number of macroinvertebrate samples per site ranging from
nine to 58. Table 5-3 gives the overall number of samples taken in each month of each year.
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Table 5-3. Total number of samples available for each month of each year

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
1974 0 0 0 0 0 0 0 0 0 0 1 0 1
1975 1 0 0 0 1 1 0 0 0 0 0 1 4
1976 1 0 0 0 0 2 0 0 0 0 0 2 5
1977 1 0 0 0 0 1 2 0 0 0 3 0 7
1978 0 0 1 0 1 0 1 2 2 0 1 1 9
1979 3 0 0 0 4 0 1 3 2 0 3 1 17
1980 5 1 1 1 1 6 2 1 3 1 3 3 28
1981 4 1 5 0 2 5 0 1 0 1 3 0 22
1982 3 2 1 4 2 5 0 1 5 4 4 0 31
1983 6 3 5 2 0 2 3 3 6 0 3 3 36
1984 6 3 16 4 3 8 11 8 2 9 12 2 84
1985 8 15 20 16 15 6 18 13 17 14 7 13 162
1986 3 8 3 13 16 24 7 15 17 19 9 9 143
1987 6 17 26 17 13 20 18 20 12 13 22 13 197
1988 6 20 13 10 9 31 6 17 18 16 12 10 168
1989 7 11 23 19 27 46 20 19 32 36 55 27 322
1990 7 11 101 74 42 75 86 61 67 113 65 6 708
1991 2 12 64 84 87 47 107 77 49 99 59 22 709
1992 11 23 37 63 73 73 70 46 51 62 37 38 584
1993 12 14 45 37 65 65 66 47 39 73 80 9 552
1994 0 7 36 29 57 51 33 37 35 52 63 20 420
1995 0 3 82 95 112 0 1 5 78 120 88 0 584
1996 3 0 20 58 132 28 14 24 42 110 54 23 508
1997 3 5 41 62 95 26 39 31 71 107 39 16 535
1998 0 3 51 62 128 3 12 13 57 68 96 4 497
1999 0 5 56 83 75 8 8 24 51 95 82 14 501
2000 0 1 81 51 151 18 17 9 70 91 39 29 557
2001 2 0 1 6 41 6 12 16 46 49 64 7 250
2002 4 1 47 84 64 4 16 11 80 56 43 2 412
2003 0 0 38 36 35 0 2 1 31 30 15 0 188
Total 104 166 814 910 1251 561 572 505 883 1238 962 275 8241

However, in only a very small proportion of cases was more than one sample taken from the
same site on the same day (
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Table 5-4). In total there were only 12 cases in which two replicate samples were taken on the
same day at the same site. For the purpose of this analysis, the small percentage of samples
from December, January, or February were ignored and data were grouped into the three
RIVPACS seasons recommended for sampling macroinvertebrates, This was done to estimate
variance between samples taken at the same site in the same RIVPACS season, but not
necessarily on the same day.

In total, there were 138 cases in which two samples were taken from the same site in the same
season of one year (Table 5). In an additional 12 cases three samples had been taken within
one season, one case with four samples – River Derwent at Whatstandwell (SK331543 – site
ID 47138) in the summer of 1987 – and one case with five samples – River Ribble at
Brockholes Bridge (SD576300 – site ID 64957) in the summer of 1993). Thus, in a total of
152 cases a site was sampled more than once during the same 3 month seasonal period within
1 year, and the cases were spread evenly across the three RIVPACS seasons.
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Table 5-4. Number of cases in each RIVPACS season with one or two samples per site per day

Cases with s samples
per site per day
1 2

Spring (March–May) 2957 9
Summer (June–September) 1638 0
Autumn (August–November) 3077 3
Total 7672 12

Table 5-5. Number of cases in each RIVPACS season with 1, 2, 3, 4, or 5 samples per site per season per
year

Obviously, one reason why more than one sample per season was taken on occasion at some
sites could have been because local biologists were investigating a known or suspected
change in water quality or environmental stress. Thus, these multi-sample cases might give an
overestimate of the ‘natural’ within-season temporal variability in LIFE. However, this is the
best information available. As random examples, the variation among the four samples taken
in summer 1987 at the Whatstandwell site (Figure 5-2) is much less than the long-term
variability at the site, whereas the range of 1.02 in LIFE values among the five samples taken
in summer 1993 at the Brockholes Bridge site (Figure 5-3) is relatively large. Three samples
were also taken from the latter site during autumn 1993, which suggests a concern about the
biological quality at the site.

Cases with s samples per site per season per year
s = 1 s = 2 s = 3 s = 4 s = 5

Spring (Mar-May) 2864 48 5 0 0
Summer (Jun-Sep) 1541 38 4 1 1
Autumn (Aug-Nov) 2970 52 3 0 0
Total 7375 138 12 1 1
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Figure 5-2. Plot of LIFE for samples taken from the River Derwent at Whatstandwell (SK331543 – site ID
47138) over the period 1985-2002; the arrow highlights summer 1987 when four samples were taken
during one season.

Figure 5-3. Plot of LIFE for samples taken from the River Ribble at BrockHoles Bridge (SD576300 – site
ID 64957) over the period 1984-2003; the arrow highlights summer 1993 when five samples were taken
during one season.

2004200220001998199619941992199019881986

8.0

7.5

7.0

C93

C
91

0

20042002200019981996199419921990198819861984

8.5

7.5

6.5

LI
FE

7.0

8.0



Science Report Producing Generalised LIFE Response Curves 43

5.4 Statistical estimation of variability

The variance in LIFE caused by replicate sample variation is estimated from the 12 cases in
which two replicate samples were taken on the same day (akin to the BAMS replicate study).
This is not sufficient information to derive accurate estimates of the inter-replicate (same-day)
variance, but it is the best available within this study. Variance in index values between
samples taken from the same site in the same season, but on different days, include the
variance ( 2

Rσ ) that arises from inherent variation between replicate macroinvertebrate
samples, but also an additional variance component ( 2

Sσ ) from short-term (i.e., within-season)
temporal variability.

The two variance components, 2
Rσ  and 2

Sσ , were appropriately estimated using an unbalanced
nested general analysis of variance that eliminated all differences between site–year–season
combinations. The analysis was performed using model procedure GLM in the Minitab
statistics software package (Minitab Release 13.1). The total within-season variance in
observed LIFE is then estimated by 222

SRT σσσ += . Expressing each variance component as a
percentage of this total also gives an impression of their relative magnitude and contribution
to uncertainty in site assessments.

As there were so few true replicate samples, the estimates of both variance components are
unlikely to be precise, as is the estimate of the relative size and importance. Therefore, an
alternative, simpler estimate, 2

Aσ , of the total within-season variance in LIFE was obtained
using a one-way ANOVA in which each site–year–season combination was treated as a
different group and 2

Aσ  is the weighted-average within-group variance obtained from the
ANOVA model error mean square. The two estimates, 2

Aσ  and 2
Tσ , of total within-season

variability are usually similar, although in theory 2
Tσ  should be the better estimator as it

correctly separates replicate within-day variance from the between-day variance.

Table 5-6 estimates the variances components for variation in observed LIFE. The estimate of
the average replicate SD based on the 12 cases with two samples taken on the same day is
only 0.147, which is considerable less than the equivalent BAMS study estimate of 0.326.
However, the number of LIFE-scoring taxa per sample in the BAMS study was less (median
= 11, range 1-25) than that for the replicate samples in the current study (median = 18, range
3-36). It has already been shown that the sampling SD of LIFE decreases with the number of
LIFE-scoring taxa present (Table 5.2, Figure 5.1). This may be sufficient to explain the
discrepancy in the two estimates of average replicate SD.

The overall estimates of within-season sampling SDs are 0.270 or 0.277 (Table 5-6). These
are only moderately less than the overall average replicate sampling SDs from the BAMS
study (Table 5-2), which suggests that they are realistic estimates of the typical variation (i.e.,
SD) that can occur in observed LIFE values by chance within any one season at a single site.
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Table 5-6. Estimates of the components of within-season variability in observed LIFE.

Source of variation d.f. Symbol Variance
estimate

Per cent
variance SD = 2σ

Between same-day replicates 12 2
Rσ 0.0215 28% 0.147

Within-season temporal 157 2
Sσ 0.0553 72%

Total within-season variance 222
SRT σσσ += 0.0768 100% 0.277

Simple average within-season
variance

169 2
Aσ 0.0728 0.270

In the current data-set, the within-season sampling SD was also found to decrease with the
average number (NLIFE) of LIFE-scoring families present per sample. The relationship was
best estimated by a linear regression relationship between log SD and NLIFE (Figure 5), which
is statistically significant (r = –0.33; p = 0.001) and given by (standard errors of regression
coefficients given underneath in brackets):

loge SD = –0.990 – 0.0581 NLIFE (5.2a)
              (0.263)    (0.0137)

which can be re-written as:
sampling SD = LIFEN)9436.0(372.0  (5.2b)

Figure 5-4. Relationship between SD of observed LIFE within a season at a site and the average number
of LIFE-scoring families present in each sample. Solid line denotes the fitted regression relationship of
Equation (5.2), while the dashed line gives the equivalent regression relationship from the BAMS study
sites for the replicate sampling SD.
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In Figure 5-4, the equivalent relationship between replicate sampling SD and NLIFE, given by
Equation (5.1) is superimposed for comparison. The two estimated relationships are generally
consistent in that the within-season sampling SD, estimated from this study, is higher than the
purely replicate (within day) sampling SD estimated from the BAMS study. The two
relationships are compared in Table 5-7, which can be used to derive estimates of uncertainty
in observed values of LIFE for other studies.

Table 5-7 Estimates of sampling SD of observed LIFE in relation to average number of LIFE-scoring
families present in a sample; replicate sampling SD estimates based on Equation (5.1) from the BAMS
study; within-season sampling SD based on Equation (5.2) from this study; estimates in brackets are
extrapolations beyond the available data range

Number of LIFE-scoring families present
(NLIFE)

Replicate
sampling SD
(from BAMS)

Within-season
sampling SD
(this study)

1 0.528 (0.351)
2 0.472 (0.331)
3 0.422 (0.312)
4 0.378 (0.295)
5 0.338 0.278
6 0.302 0.262
7 0.270 0.247
8 0.241 0.233
9 0.216 0.220

10 0.193 0.208
12 0.155 0.185
15 0.111 0.155
20 0.063 0.116
25 0.036 0.087
30 (0.021) 0.065
35 (0.012) 0.049

In summary, replicate sampling and within-season variability in LIFE score decreases with
the number of taxa present in the samples. Thus, in poorer quality or highly impacted sites
with fewer taxa present, LIFE O/E is expected to be lower, but also more prone to sampling
variability. Hence LIFE O/E estimations are less precise than those for high-quality
unstressed sites.

The figures for simple, average within-season sampling variance was compared with the
overall variation in LIFE score from the data-set as a whole, measured as total mean squares.
This represents a rough calculation of within-season sampling variance as a proportion of the
total variance of LIFE scores. It gives (in units of variance, i.e., LIFE O/E squared) both an
estimated lower limit to the total sum of squares of the data, and an estimated maximum
possible R² for any regression model (Table 5-8).

Table 5-8. Comparison of simple average within-season variance and total variance in LIFE (family)

A. Simple average within-season variance 0.0728
B. Mean sum of squares of LIFE (family) in data-set 0.2637
Ratio A/B 0.27 or 27 per cent
Maximum model R² :1 – (A/B) 0.72 or 72 per cent
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This analysis does not include uncertainties in expected LIFE. Also, it does not include the
variation in sampling variance with number of LIFE-scoring families, and the sampling
variance is based on limited data. However, it does give a very rough indication of the
maximum possible R² of a model that predicts LIFE (family) of around 0.75.
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6 Conclusions

Although over 8000 macroinvertebrate samples are available for analysis in the database, only
a much smaller subset could be analysed together. Linear modelling has demonstrated that
autumn LIFE O/E does, indeed, vary systematically with flow. Flow variables from the
immediately preceding summer are the most important in explaining variation. The relative
importance of high and low flow variables can depend on how they are standardised. The
simplest models, which explain variation in LIFE O/E solely on preceding flows, confirm the
validity of the LIFE approach, but they do not explain a high proportion of overall variation in
LIFE O/E.

Factors that improve the fit of the basic LIFE flow model are
• whether there are significant artificial influences in the catchment;
• base flow index –(BFI),by dividing the data into several sub-models based on classes

of BFI;
• immediately preceding spring sample LIFE O/E;
• a ‘site’ factor to encompass all unexplained variation in mean LIFE O/E.

There is a trend for higher BFI sites to show negative relationships between LIFE O/E and
winter Q10, for which there are several logical reasons. These sites are also more strongly
associated with Q95 flows from the previous summer, although this trend is weak. Both these
relationships can easily be masked by inter-site differences. Overall, we saw little evidence of
the increased response time of baseflow-dominated catchments noted by Extence et. al. 1999.
The relationship with BFI is clearly important, but it is complex and needs further
investigation. Predicting LIFE O/E from flow and artificial influences for the different BFI
categories shows relatively low, but highly significant, R² values; lower BFI catchments show
stronger relationships (R² of 0.23 versus 0.13).

The tendency for higher BFI catchments to show lower model R² values could indicate that
the basic flow variables chosen (summer, winter Q10, Q95) are not appropriate for such
catchments. This is supported by the observation that in a groundwater-dominated river, Q95
may not vary that much, even under drought conditions. It is probably more appropriate to
choose alternative indices for these catchments, such as durations under threshold.

Although RIVPACS is a good predictor of the expected LIFE score at unstressed reference
sites (Clarke et al. 2003), there is still clearly a considerable unexplained site-to-site variation
in the LIFE O/E for our study sites subject to varying degrees of stress. Part of this inter-site
variation in LIFE O/E can be explained by adding BFI to the models. This is illustrated by the
wide variation in slopes of the individual site’s LIFE O/E versus flow relationship. It was
disappointing that the RIVPACS biological site group could not be related to slope of
response – further in-depth analysis could be undertaken here. For the analysis undertaken,
the data supported common LIFE versus flow slopes for all sites, although there was evidence
of an interaction effect between artificial influences and preceding summer Q10 – the more
artificially-influenced catchments had more depressed LIFE O/E values when summer Q10
was low, but had LIFE O/Es similar to those of the less artificially-influenced catchments
when summer Q10 was high.

Incorporating either previous spring LIFE O/E or a site factor improves model R² to around
0.4 and 0.6, respectively. This confirms both the strong variation of LIFE score with flow
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across sites and the unexplained site-to-site variation in mean LIFE O/E score. The R² of 0.6
represents the upper limit of what can be achieved with the current flow variables and linear
modelling. The unexplained variation in mean LIFE O/E score is hindering attempts to
discern patterns of differing slope of response of LIFE O/E to flow. The ‘site”’ factor could,
indeed, represent, at least in part, site factors such as channel geometry and habitat diversity
not currently included in the models presented.

Autocorrelation in LIFE O/E scores has been handled in part by restricting the majority of the
analysis to autumn LIFE O/E data. However, autocorrelation of autumn–autumn scores is still
important, especially in high BFI catchments, which have more strongly correlated flows. An
analysis of the autocorrelation of model residuals suggests that the obvious autocorrelation in
autumn LIFE O/E can be explained largely by autocorrelation in the driving flow variables.

Analysis of replicate data taken within a season has allowed calculation of an average total
within-season SD of LIFE score. Consistent with previous work, this decreases with number
of taxa observed. This has important implications for the detection of low flow stress. Not
only will uncertainty increase because data points will be towards the lower end of the
regression relationship, but also it is likely to increase because fewer taxa will be observed. A
simple comparison of the average total within-season variance with total mean squares of the
LIFE response variable suggests an upper limit of R² of around 0.75. The model R² values
quoted in this report should be compared with this figure.

Unexplained variation in mean LIFE O/E can, hopefully, be tackled by improvements to
RIVPACS, perhaps by incorporating catchment characteristics from digital data-sets, plus
further work on flow standardisation. Unexplained variation in the slope of the response of
LIFE to flow could be tackled in several ways, including a more sophisticated application of
the RIVPACS groupings and incorporation of additional site and/or habitat data. This
unexplained variation needs to be addressed for single LIFE O/Es to be a useful tool in
determining abstraction and/or flow stress without supporting information. However, the
models as they stand would be extremely useful to assist in determining the response when
only small amounts of data are available.



Science Report Producing Generalised LIFE Response Curves 49

7 Recommendations

The recommendations are given in a very rough order or priority.

1. A priority is to link this work with current and planned Environment Agency practice for
using LIFE in river flow management. This could be achieved by:

• A presentation of the results of the current work by CEH staff to Environment Agency
water resources and ecology staff who work on applying LIFE in various contexts,
such as the Water Framework Directive (WFD) and CAMS.

• A case study that applies the models from this study, along with Environment Agency
water resources tools, to a catchment with good hydrological and macroinvertebrate
data. Two options are:

o application to the Kennet catchment by CEH is ongoing as part of the EU
Harmoni-Rib project;

o application to a catchment in the Northern Area of the Anglian Region.

2. Given the success of incorporating an extremely simple measure of abstraction pressure, it
would be productive to expand the data-set using improved, quantitative information on
hydrological pressures. The derivation of these data is already being undertaken by CEH for
the Environment Agency as part of WFD work. Closer linkage of LIFE with Low Flows 2000
would allow a much more comprehensive data analysis, as it would remove the requirements
to chose only sites close to gauging stations. This could be given a trial in a pilot catchment,
as mentioned above.

3. The unexplained variation in mean LIFE O/E needs to be improved, as this is currently
masking potential differences in slope of response across sites. Improvement of the expected
LIFE scores could be made by incorporating digitally-derived catchment characteristics, such
as BFI from HOST (hydrology of soil types) into RIVPACS.

4. While there is still some unexplained variation in mean LIFE O/E, more sophisticated
modelling of the slope of response of LIFE to flow is also required. Evidence for non-linear
effects at the extremes of LIFE O/E and flow (e.g., low flows) is still unclear. If it does exist,
this relationship is still masked by the large site-to-site differences. Simple visual examination
of some of the plots of LIFE O/E versus flow suggests some kind of non-linearity. Site and/or
habitat characteristics could explain the differing slopes of response of LIFE O/E to flow. The
addition of improved site characteristics, such as basic channel geometry and habitat quality,
should be attempted for sites with good time series of family- or species-level LIFE scores.
Pilot testing of improved site characteristics could be undertaken in tandem with the
Environment Agency–CEH RAPHSA project, and also with any other pilot study.

5. Further understanding of the differences in response of the communities across the BFI
continuum is certainly possible with the current LIFE data-set, but would require more
specific flow indices. A systematic evaluation of a wider suite of flow indices, and of
correlations between the different indices within a year and between years for the same
indices, would be useful. A list of potential indices is given in Appendix B.

6. Improved modelling of the autocorrelation in LIFE score and its dependence on
autocorrelated flow data.
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7. An updated comparison of the effectiveness of family-level versus species-level LIFE
response (as undertaken by Extence et al. 1999), using the methods in this report and updated
data.

8. Further investigation of the various sources of uncertainty that affect the LIFE score is
important, given the evidence presented here of the high contribution of within-season
sampling uncertainty to total variation in LIFE score. It would be useful to be able to partition
the causes of the obvious tighter relationships observed for species-level data into the greater
taxonomic characterisation of the community versus the tighter flow preferences of species-
level data over family-level data.

9. It would be useful to test the validity of the approach adopted for this study in other
countries. Environment Agency funding would clearly not be actively sought for such a study,
but Environment Agency collaboration and advice would be useful.
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Appendix A: Further details of individual models

(Section 4.5 Effects of base flow index ) – three BFI categories
(Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 )

A1 - Most parsimonious models (flows standardised by z scores)

Call:
lm(formula = LIFE.Y ~ IPSQ95z + IPSQ10z + IPWQ95z + IPWQ10z +
    CURRAI2 + BFI, subset = BFI < 0.4)

Residuals:
      Min        1Q    Median        3Q       Max
-0.105087 -0.024782  0.001439  0.023798  0.151073

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.948243   0.021568  43.966   <2e-16 ***
IPSQ95z      0.009768   0.004081   2.394   0.0174 *
IPSQ10z      0.006662   0.004442   1.500   0.1350
IPWQ95z      0.005915   0.003616   1.636   0.1032
IPWQ10z      0.005200   0.003393   1.533   0.1267
CURRAI22INF -0.013168   0.006004  -2.193   0.0292 *
BFI          0.127454   0.063402   2.010   0.0455 *
---

Residual standard error: 0.04172 on 244 degrees of freedom
Multiple R-Squared: 0.2004,     Adjusted R-squared: 0.1807
F-statistic: 10.19 on 6 and 244 DF,  p-value: 4.638e-10

Call:
lm(formula = LIFE.Y ~ IPSQ95z + IPSQ10z + YBSQ10z + CURRAI2 +
    BFI, subset = BFI > 0.4 & BFI < 0.7)

Residuals:
      Min        1Q    Median        3Q       Max
-0.163155 -0.031360  0.001752  0.031698  0.151941

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.880934   0.011288  78.042  < 2e-16 ***
IPSQ95z      0.009317   0.002833   3.288  0.00105 **
IPSQ10z      0.007575   0.002648   2.860  0.00435 **
YBSQ10z      0.003145   0.001883   1.670  0.09526 .
CURRAI22INF -0.016676   0.004109  -4.058 5.45e-05 ***
BFI          0.205649   0.020619   9.974  < 2e-16 ***
---

Residual standard error: 0.04732 on 760 degrees of freedom
Multiple R-Squared: 0.2128,     Adjusted R-squared: 0.2076
F-statistic: 41.08 on 5 and 760 DF,  p-value: < 2.2e-16

Call:
lm(formula = LIFE.Y ~ IPSQ95z + CURRAI2 + BFI, subset = BFI >
    0.7)

Residuals:
      Min        1Q    Median        3Q       Max
-0.150008 -0.031523  0.002617  0.034949  0.146090
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Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.878064   0.025584  34.321  < 2e-16 ***
IPSQ95z      0.014174   0.002617   5.415 1.01e-07 ***
CURRAI22INF -0.021599   0.006978  -3.095  0.00209 **
BFI          0.138769   0.029085   4.771 2.50e-06 ***
---

Residual standard error: 0.05326 on 440 degrees of freedom
Multiple R-Squared: 0.1264,     Adjusted R-squared: 0.1204
F-statistic: 21.21 on 3 and 440 DF,  p-value: 7.5e-13

A2 - Most parsimonious models (flows standardised by dividing by mean)

Call:
lm(formula = LIFE.Y ~ IPSQ95dMEAN + IPSQ10dMEAN + IPWQ95dMEAN +
    YBSQ10dMEAN + CURRAI2 + BFI, subset = BFI < 0.4)

Residuals:
      Min        1Q    Median        3Q       Max
-0.115669 -0.026833  0.001542  0.028059  0.148604

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.932653   0.020922  44.578  < 2e-16 ***
IPSQ95dMEAN  0.125607   0.060332   2.082  0.03839 *
IPSQ10dMEAN  0.021493   0.005013   4.287 2.61e-05 ***
IPWQ95dMEAN  0.042605   0.030856   1.381  0.16861
YBSQ10dMEAN  0.008698   0.005718   1.521  0.12953
CURRAI22INF -0.015873   0.005922  -2.680  0.00786 **
BFI          0.016552   0.064515   0.257  0.79773
---

Residual standard error: 0.04039 on 244 degrees of freedom
Multiple R-Squared: 0.2506,     Adjusted R-squared: 0.2321
F-statistic:  13.6 on 6 and 244 DF,  p-value: 2.618e-13

Call:
lm(formula = LIFE.Y ~ IPSQ95dMEAN + IPSQ10dMEAN + YBSQ10dMEAN +
    CURRAI2 + BFI, subset = BFI > 0.4 & BFI < 0.7)

Residuals:
      Min        1Q    Median        3Q       Max
-0.160194 -0.031315  0.002343  0.031361  0.156594

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.862720   0.012263  70.350  < 2e-16 ***
IPSQ95dMEAN  0.064975   0.024715   2.629  0.00874 **
IPSQ10dMEAN  0.017699   0.003422   5.173 2.95e-07 ***
YBSQ10dMEAN  0.007698   0.003121   2.466  0.01388 *
CURRAI22INF -0.021735   0.004232  -5.136 3.56e-07 ***
BFI          0.168301   0.023253   7.238 1.12e-12 ***
---

Residual standard error: 0.04729 on 760 degrees of freedom
Multiple R-Squared: 0.2137,     Adjusted R-squared: 0.2085
F-statistic:  41.3 on 5 and 760 DF,  p-value: < 2.2e-16

Call:
lm(formula = LIFE.Y ~ IPSQ10dMEAN + IPWQ95dMEAN + YBSQ95dMEAN +
    CURRAI2 + BFI, subset = BFI > 0.7)

Residuals:
      Min        1Q    Median        3Q       Max
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-0.154802 -0.032258  0.002083  0.035257  0.147137

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.832305   0.028161  29.555  < 2e-16 ***
IPSQ10dMEAN  0.009821   0.004352   2.257  0.02452 *
IPWQ95dMEAN  0.074892   0.018386   4.073 5.50e-05 ***
YBSQ95dMEAN -0.065113   0.020098  -3.240  0.00129 **
CURRAI22INF -0.021012   0.007019  -2.994  0.00291 **
BFI          0.167893   0.033685   4.984 8.98e-07 ***
---

Residual standard error: 0.05285 on 438 degrees of freedom
Multiple R-Squared: 0.1434,     Adjusted R-squared: 0.1337
F-statistic: 14.67 on 5 and 438 DF,  p-value: 2.614e-13

A3 - BFI categories: reduced models with catchment area

Call:
lm(formula = LIFE.Y ~ IPSQ95z + IPSQ10z + CAT_AREA, subset = BFI <
    0.4)

Residuals:
      Min        1Q    Median        3Q       Max
-0.114031 -0.027002  0.000996  0.023958  0.116785

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.784e-01  3.623e-03 270.012  < 2e-16 ***
IPSQ95z     1.038e-02  4.109e-03   2.527  0.01213 *
IPSQ10z     7.950e-03  4.509e-03   1.763  0.07909 .
CAT_AREA    2.180e-05  6.837e-06   3.189  0.00161 **
---

Residual standard error: 0.04235 on 247 degrees of freedom
Multiple R-Squared: 0.1661,     Adjusted R-squared: 0.156
F-statistic:  16.4 on 3 and 247 DF,  p-value: 9.416e-10

> summary(zzlm2)

Call:
lm(formula = LIFE.Y ~ IPSQ95z + IPSQ10z + CAT_AREA, subset = BFI >
    0.4 & BFI < 0.6)

Residuals:
      Min        1Q    Median        3Q       Max
-0.162841 -0.029847  0.002144  0.031141  0.180721

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)  9.802e-01  2.398e-03 408.684  < 2e-16 ***
IPSQ95z      8.827e-03  3.154e-03   2.799  0.00531 **
IPSQ10z      9.229e-03  3.088e-03   2.989  0.00293 **
CAT_AREA    -5.369e-06  2.338e-06  -2.297  0.02200 *
---

Residual standard error: 0.04846 on 562 degrees of freedom
Multiple R-Squared: 0.1107,     Adjusted R-squared: 0.106
F-statistic: 23.32 on 3 and 562 DF,  p-value: 3.062e-14

> summary(zzlm3)

Call:
lm(formula = LIFE.Y ~ IPSQ95z + IPSQ10z + CAT_AREA, subset = BFI >
    0.6)
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Residuals:
      Min        1Q    Median        3Q       Max
-0.171530 -0.031681  0.002146  0.035911  0.155917

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.002e+00  2.212e-03 452.879  < 2e-16 ***
IPSQ95z     1.201e-02  3.602e-03   3.334 0.000905 ***
IPSQ10z     3.527e-03  3.440e-03   1.025 0.305537
CAT_AREA    2.241e-06  2.516e-06   0.891 0.373411
---

Residual standard error: 0.05275 on 652 degrees of freedom
Multiple R-Squared: 0.0696,     Adjusted R-squared: 0.06532
F-statistic: 16.26 on 3 and 652 DF,  p-value: 3.353e-10

A4 - Best models for North West Region bankside sorted data

Call:
lm(formula = LIFE.Y ~ IPSQ10z + IPSQ95z + BFI)

Residuals:
      Min        1Q    Median        3Q       Max
-0.102407 -0.025569  0.004777  0.024130  0.102062

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  1.102364   0.028211  39.076  < 2e-16 ***
IPSQ10z      0.012707   0.008087   1.571  0.12230
IPSQ95z      0.015771   0.008916   1.769  0.08289 .
BFI         -0.233956   0.068158  -3.433  0.00119 **
---

Residual standard error: 0.04159 on 51 degrees of freedom
Multiple R-Squared: 0.3542,     Adjusted R-squared: 0.3162
F-statistic: 9.323 on 3 and 51 DF,  p-value: 5.114e-05

Call:
lm(formula = LIFE.Y ~ IPSQ10dMEAN + IPWQ95dMEAN + YBSQ95dMEAN)

Residuals:
       Min         1Q     Median         3Q        Max
-0.0878954 -0.0241254 -0.0003187  0.0226530  0.0781071

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.95851    0.01715  55.893  < 2e-16 ***
IPSQ10dMEAN  0.06646    0.01173   5.664 6.85e-07 ***
IPWQ95dMEAN  0.14139    0.07148   1.978  0.05334 .
YBSQ95dMEAN -0.46949    0.15400  -3.049  0.00364 **
---

Residual standard error: 0.03897 on 51 degrees of freedom
Multiple R-Squared: 0.4331,     Adjusted R-squared: 0.3998
F-statistic: 12.99 on 3 and 51 DF,  p-value: 2.018e-06

A5 - Effects of adding mean flow term to model

Call:
lm(formula = I(LIFE_F - ELIFE3) ~ log(IPSQ95RAW) + log(IPSQ10RAW) +
    log(MEANFLOW) + CURRAI2 + BFI, subset = BFI > 0.4)

Residuals:
     Min       1Q   Median       3Q      Max
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-1.14101 -0.21397  0.01692  0.23090  1.17921

Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)    -0.29375    0.06419  -4.576 5.22e-06 ***
log(IPSQ95RAW)  0.07756    0.02280   3.402  0.00069 ***
log(IPSQ10RAW)  0.15340    0.02131   7.199 1.06e-12 ***
log(MEANFLOW)  -0.21624    0.02330  -9.282  < 2e-16 ***
CURRAI22INF    -0.10695    0.02459  -4.350 1.48e-05 ***
BFI             0.39857    0.06569   6.067 1.73e-09 ***
---

Residual standard error: 0.3482 on 1219 degrees of freedom
Multiple R-Squared: 0.1545,     Adjusted R-squared: 0.1511
F-statistic: 44.56 on 5 and 1219 DF,  p-value: < 2.2e-16

Call:
lm(formula = LIFE.Y ~ IPSQ95dMEAN + IPSQ10dMEAN + CURRAI2 + BFI,
    subset = BFI > 0.4)

Residuals:
      Min        1Q    Median        3Q       Max
-0.163018 -0.032092  0.002268  0.033589  0.167515

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.945387   0.006720 140.688  < 2e-16 ***
IPSQ95dMEAN  0.011860   0.011398   1.041 0.298293
IPSQ10dMEAN  0.018677   0.002705   6.905 8.06e-12 ***
CURRAI22INF -0.017464   0.003620  -4.825 1.58e-06 ***
BFI          0.037966   0.011195   3.391 0.000718 ***
---

Residual standard error: 0.05127 on 1220 degrees of freedom
Multiple R-Squared: 0.114,      Adjusted R-squared: 0.1111
F-statistic: 39.24 on 4 and 1220 DF,  p-value: < 2.2e-16
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Appendix B: Potential additional flow indices

Several authors have published descriptions of flow indices of potential use for ecological studies,
two of the most well-known being Richter et al. (1996) and Clausen and Biggs (2000). Authors
have also looked into the intercorrelation between the indices (Olden and Poff, 2004), and their
relationships with river ecology (Clausen and Biggs, 1997; Riis and Biggs, 2003).

A list of potential flow indices is:

General variability:
SK Skewness defined as MF/Q50
CV Coefficient of variation of all daily flows
CON Constancy (Colwel, 1974)

Seasonal variability:
Coefficient of variation of mean monthly flow in:

JANCV January
FEBCV February
MARCV March
APRCV April
MAYCV May
JUNCV June
JULCV July
AUGCV August
SEPCV September
OCTCV October
NOVCV November
DECCV December

High flow:
Q1 The 1st percentile from the flow duration curve/Q50
Q10 The 10th percentile from the flow duration curve/Q50
Q25 The 25th percentile from the flow duration curve/Q50
MAMAX Mean annual 1-day maximum/Q50
MAMAX7 Mean annual 7-day maximum/Q50
MAMAX30 Mean annual 30-day maximum/Q50
MAX50 Median of the annual maxima/Q50

Mean peak flow divided by Q50 for events higher than:
PEA1 1 times Q50
PEA3 3 times Q50
PEA7 7 times Q50
PEA25 the 25th percentile

Low flow:
BFI Baseflow index (Gustard et al., 1992; Institute of Hydrology 1980)
Q75 The 75th percentile from the flow duration curve/Q50
Q90 The 90th percentile from the flow duration curve/Q50
MAMIN Mean annual 1-day minimum/Q50
MAMIN7 Mean annual 7-day minimum/Q50
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MAMIN30 Mean annual 30-day minimum/Q50
MIN50 Median of the annual minima/Q50

Change of flow:
NODAYRISES Average ratio of days with increasing flow
Median of difference between natural logarithm of flows (in m3 s–1):
KPOS between two consecutive days with increasing flow
KNEG between two consecutive days with decreasing flow
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Appendix C: Supplemental graphs
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Figure C-1. Time series of LIFE scores: sites in the Anglian Region.
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Figure C-2. Time series of LIFE scores: sites in the Midland Region.
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Figure C-3. Time series of LIFE scores: sites in the North East Region.
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Figure C-4. Time series of LIFE scores: sites in the North West Region.
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Figure C-5. Time series of LIFE scores: sites in the Southern Region.
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Figure C-6. Time series of LIFE scores: sites in the Thames Region.
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Figure C-7. Time series of LIFE scores: sites in the Welsh and South West Regions
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Figure C-8. Individual regression lines for each site for autumn LIFE O/E versus normalised Q95 and Q10 from
immediately preceding summer
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Figure C-9. Individual time series for each site for autumn LIFE O/E and normalised Q95 and Q10 from
immediately preceding summer
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We welcome views from our users, stakeholders and the public, including comments
about the content and presentation of this report. If you are happy with our service,
please tell us about it. It helps us to identify good practice and rewards our staff. If you
are unhappy with our service, please let us know how we can improve it.
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