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Abstract 23 

Energy equivalence, the notion that population energy flux is independent of mass, has become a key 24 

concept in ecology. We argue that energy equivalence is not an ecological ‘rule’, as claimed, but a 25 

flawed concept beset by circular reasoning. In fact, the independence of mass and energy flux is a null 26 

hypothesis. We show that our mechanistic understanding of size-density relationships (SDRs) follows 27 

directly from this null model and the assumption that energy limits abundance. Paradoxically, without 28 

this assumption energy equivalence has no meaning and we lack a mechanistic understanding for 29 

SDRs. We derive an expression for the strength (r
2
) of SDRs under the null model, which provides a 30 

framework within which to compare published SDRs. This confirms that tight correlations between 31 

mass and abundance are a trivial consequence of the span of body masses considered. Our model 32 

implies that energy flux varies by 5-6 orders of magnitude among similarly sized mammals and to a far 33 

greater extent in birds. We conclude that the energetic paradigm can be strengthened by considering 34 

alternative, non-energetic, hypotheses. 35 

36 
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Introduction 37 

The relationship between body size and abundance is a key focus of research in ecology (White et al., 38 

2007). Damuth reported a size-density relationship (SDR) following a power law with a scaling 39 

exponent close to –3/4 (Eqn 1a), first among mammals (Damuth, 1981) and later across a wide range of 40 

vertebrate taxa (Damuth, 1987). He realized that this value was the inverse of Kleiber’s metabolic 41 

scaling exponent 3/4 (Eqn 1b), which implies that the population energy flux per unit area, estimated as 42 

the product of metabolic rate and abundance, will be independent of body mass (Eqn 1c). In the scaling 43 

jargon, energy flux is said to be ‘invariant’ with respect to mass, M. Nee et al. (1991) reported the same 44 

pattern among British birds, and coined the phrase ‘energetic equivalence rule’ for situations where the 45 

allometric scaling exponents for whole-organism metabolic rate, I, and population density, N, sum to 46 

zero. This was formalised as part of the Metabolic Theory of Ecology (Brown et al., 2004) in the 47 

context of the availability (supply rate) of resources, R: 48 

 N  M
-b

 I  M
b 

R  I.N  M
0 

Equation 1a-c 49 

 This set of relationships constitutes the general concept of Energy Equivalence (EE), which has 50 

become a cornerstone of macroecology and formed the basis of theories about population dynamics 51 

(Savage et al., 2004) and biodiversity patterns (Allen et al., 2002). EE is underpinned by the assertion 52 

that abundance is directly dependent on energy available to the population: an increase in energy input 53 

leads to an increase in abundance, mediated by the energy requirements of each individual (Brown et 54 

al., 2004; Ernest et al., 2008; Ernest et al., 2009). We refer to this paradigm as the ‘energetic view of 55 

abundance’ (see also Taper & Marquet, 1996; Morlon et al., 2009). 56 

 Some authors considered the independence of mass and energy flux to be a fundamental rule. 57 

For example, it has been stated that EE “reflects mechanistic connections … and the partitioning of 58 

available energy among species in a community” (Allen et al., 2002), and “suggests that some 59 
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combination of physiological and ecological processes results in energetic tradeoffs, such that 60 

resources are divided equally across species” (White et al., 2007). However, there is no strong 61 

theoretical basis for EE across species (Damuth, 1981; Brown, 1995; Brown et al., 2004; Carbone et 62 

al., 2007; White et al., 2007), although there have been several attempts to fill this gap. Charnov et al. 63 

(2001) suggested that EE in mammals is a consequence of life history trade-offs (between fecundity 64 

and longevity) and population dynamics (including density dependent juvenile survival). Damuth 65 

(2007) developed a simulation model that produced EE through competitive interactions between pairs 66 

of species. Harte et al. (2008) have argued that EE may be a consequence of the maximum entropy 67 

principle, i.e. that it results from the most probable statistical distributions of body sizes, species, and 68 

individuals in space within particular constraints given by total number of individuals, total number of 69 

species, and total energy available within given area. 70 

 Energy Equivalence has been challenged on both empirical and conceptual grounds. Marquet et 71 

al. (1995) described problems with both the assumptions of EE and the statistical approaches to testing 72 

EE. A growing number of studies have reported patterns inconsistent with EE at a variety of spatial 73 

scales (Blackburn & Gaston, 1997; Russo et al., 2003; Hayward et al., 2009; Morlon et al., 2009; Isaac 74 

et al., 2011b), although Carbone et al. (2007) showed that geometric considerations could lead to a 75 

range of SDR exponents even when mass and energy flux are uncorrelated. Others have proposed non-76 

energetic explanations for the SDR (Blackburn et al., 1993; Cotgreave, 1993).  77 

 Here we argue that EE is not a useful a concept in ecology. We highlight logical flaws in the 78 

concept of EE itself, and of the evidence used to test it. We discuss what insights might be possible 79 

from the SDR, and suggest new directions for research in this field.  80 
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The Paradox 81 

We contend that the concept of EE is at best misunderstood, at worst fundamentally flawed. Equation 82 

1c does not imply that all species use equal amounts of energy, merely that energy flux is independent 83 

of mass. The absence of a correlation between mass and energy should not be surprising: it is, after all, 84 

a null hypothesis which does not require any specific mechanism. Accepting EE as the null has two 85 

important implications: 1) that neither resource partitioning nor interspecific competition need to be 86 

invoked; 2) that authors claiming to find support for EE have fallen into that most basic statistical trap, 87 

namely of accepting the null hypothesis rather than failing to reject it.  88 

 Such shortcomings of logic might be explained by the fact that energy flux is never measured, 89 

but is inferred as the sum of individual metabolic rates (Eqn 1c). The ‘evidence’ (or lack thereof) for 90 

EE is usually based on a simple comparison of the SDR exponent with some nominal value of the 91 

metabolic scaling exponent (usually 3/4). This too is flawed: the coincidence of scaling exponents (Eqn 92 

1a and 1b) does not constitute evidence, either for EE or for the wider energetic paradigm, unless 93 

alternate hypotheses can be rejected. However, without the energetic view of abundance we lack a 94 

mechanistic understanding for SDRs: by assuming that abundance is driven by energy availability, the 95 

coincidence of scaling exponents becomes a trivial consequence of the fact that population energy flux 96 

is unbiased with respect to body size. From this it follows, paradoxically, that energy equivalence is a 97 

trivial and uninformative pattern under the energetic view of abundance, but is a meaningless concept if 98 

we take the opposing (non-energetic) view. 99 

Tight-fitting size-density relationships are not surprising 100 

Inferences about energy partitioning are usually based on the tightness (or lack thereof) of the SDR. 101 

The tightness of SDRs is strongly related to the range of body sizes considered (Tilman et al., 2004; 102 
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Hayward et al., 2010): we extend this observation to emphasise that EE is trivial, and that it has no real 103 

predictive power. 104 

 We derived an analytical expression (see Appendix) for the predictive power of body mass in 105 

SDRs under the strict version of the energetic paradigm and the null expectation of no correlation 106 

between species’ body mass, M, and energy flux, R. In our model, M and R and independent random 107 

variables, but species abundance, N, is wholly determined by R/M
3/4

. We refer to this as the ‘energetic 108 

null model’. Our model reveals that tight relationships occur when the variance in mass is high relative 109 

to the variance in energy flux (or resource availability). Indeed, high r
2
 is inevitable with a large 110 

enough span in body mass (>10 orders of magnitude, figure 1), regardless of the distribution of energy 111 

flux (c.f. Hayward et al., 2010).  112 

 Our energetic null model provides a framework within which to compare the fit of published 113 

SDRs whilst controlling for the span in body mass. Not surprisingly, the best-fitting SDRs (relative to 114 

the mass range) are found among studies that controlled for key factors influencing underlying 115 

variation in organism abundance, such as access to resources. For example, Carbone & Gittleman 116 

(2002) showed that prey biomass is a key determinant of abundance among mammalian carnivores: 117 

controlling for prey availability provides a dramatic improvement in the predictive power of body 118 

mass. Likewise, a study based on carrying capacity in single-species stands of plants (i.e. without 119 

interspecific competition) showed a similarly tight-fitting SDR (Enquist et al., 1998). 120 

 Damuth’s classic mammalian SDR (Damuth, 1981; Damuth, 1987) has r
2
=0.65 across nearly 121 

six orders of magnitude in body mass: random subsets with smaller mass ranges have correspondingly 122 

weaker fits (figure 2). These patterns are consistent with the energetic null model in which log10(energy 123 

flux) is a random normal deviate with a standard deviation in the range 1.25 - 1.65, corresponding to 124 

95% confidence intervals of 80,000 and 3,000,000 fold variation in energy flux for each size class. This 125 
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magnitude of variation seems at odds with the notion of EE as an ecological ‘rule’ with predictive 126 

power, even after accounting for error variance in estimating the abundance of wild mammal 127 

populations, many of which are probably below carrying capacity. The much weaker fit among bird 128 

SDRs implies still higher levels of variation (7-8 orders of magnitude variation in energy flux). Overall, 129 

given the implied range of variation in energy flux, it seems reasonable to reject the notion that these 130 

patterns emerge from “resource partitioning” or “energetic trade-offs“ (Allen et al., 2002).  131 

The Way Ahead 132 

The problems associated with EE should not be interpreted as an attack on the energetic view of 133 

abundance, which has contributed much to our understanding of large-scale patterns in community 134 

structure (Brown et al., 2004; Ernest et al., 2008; McGill, 2008; Ernest et al., 2009), and which we find 135 

to be plausible in the broadest sense. Rather we urge researchers to discard the notion of energy 136 

equivalence as an ecological ‘rule’, to focus instead on the mechanisms underpinning abundance-137 

energy relationships, and to consider alternative (i.e. non-energetic) determinants of species’ 138 

abundance.  139 

 To some degree, this is already happening, using data on abundances within communities. New 140 

applications of species abundance distributions, using currencies of energy and biomass, have provided 141 

novel insights into the partitioning of resources among species (Connolly et al., 2005; Reuman et al., 142 

2008; Morlon et al., 2009; Henderson & Magurran, 2010). A related example is the concept of zero-143 

sum dynamics, in which the energy flux of communities remains stable whilst the abundance (and body 144 

size) of individual species fluctuates in a way that reflects individual metabolic requirements (Ernest et 145 

al., 2008; Ernest et al., 2009). Another prediction of the energetic paradigm is that abundance should 146 

increase with available energy: evidence supporting this prediction has been reported for a range of 147 

taxa (Mcnaughton et al., 1989; Meehan et al., 2004; Meehan, 2006; Barton & Zalewski, 2007; 148 
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Pettorelli et al., 2009; Kaspari & Weiser, 2012), but counter-examples also exist (Currie & Fritz, 1993; 149 

Isaac et al., 2011a). 150 

 Studies taking the energetic view of abundance should be more explicit about their assumptions. 151 

A good example is how individual energy requirements are estimated: most studies use basal metabolic 152 

rates, rather than field rates (which scale more steeply, Nagy, 2005). Many studies approximate 153 

metabolic rates as M
3/4

 (Ernest et al., 2008; Ernest et al., 2009): this is reasonable for a large range in 154 

mass, but for small (<1 order of magnitude) ranges the predictive power of Kleiber’s ‘law’ is much 155 

reduced (Isaac & Carbone, 2010). In addition, correlations between mass and energy flux should be 156 

accompanied by an estimate of the power to reject the null model (with specific reference to the span of 157 

body masses under consideration). 158 

 We have alluded to the fact that the energetic view of abundance is not universally accepted. 159 

Blackburn et al. (1993) presented an explanation for the SDR based on the distribution of species body 160 

sizes and the fact that rare species tend to go unrecorded. An alternative “non-energetic” view is that 161 

abundance could be conceived as a random variable between hard boundaries (Marquet et al., 1995). 162 

Cotgreave (1993) has pointed out that body size imposes a physical limit on population density, and 163 

that space-filling would generate a scaling in the upper boundary of -2/3 (contrast this with the –3/4 164 

upper boundary that would be expected from energy monopolisation: Blackburn & Gaston, 2001). We 165 

could equally envisage a lower boundary of ecological abundance based on the fact that individuals 166 

must be able to meet each other to reproduce. Minimum density can be defined as the density at which 167 

population growth rate becomes negative due to Allee effects (Courchamp et al., 1999). We expect that 168 

minimum density would be related to daily distance traversed, which itself scales with body size 169 

(Carbone et al., 2005). Estimating extreme population densities is problematic, and probably prevents 170 

this idea from being seriously tested (but see Silva & Downing, 1994). However, similar non-energetic 171 



9 

 

models might derive testable predictions. We believe that macroecology will be advanced by 172 

considering both energetic and non-energetic hypotheses in concert, and comparing the predictions of 173 

these divergent perspectives. 174 
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Figures 180 

Figure 1.  Explanatory power of body mass in size-density relationships (expressed as r
2
) plotted 181 

against the number of orders of magnitude in mass range. Lines are derived from our expression (see 182 

Appendix) for the energetic null model with differing amounts of variation (expressed as standard 183 

deviations) in log10(energy flux) among species. The points are SDRs reported in the literature for birds 184 

(circles), mammals (squares), invertebrates (diamonds), animals (crosses) and plants and phytoplankton 185 

(triangles) (Data from Damuth, 1981; Peters, 1983; Damuth, 1987; Marquet et al., 1990; Cotgreave & 186 

Harvey, 1992; Ebenman et al., 1995; Enquist et al., 1998; Belgrano et al., 2002; Carbone & Gittleman, 187 

2002). The arrow links two points for mammalian carnivores (Carbone & Gittleman, 2002): the lower 188 

point is raw abundance data, the upper is corrected for prey abundance. 189 

 190 

 191 

 192 

Figure 2. Explanatory power of the mammalian size-density relationship (expressed as r
2
) is strongly 193 

related to the range of body masses considered. Grey points are 10,000 random subsets of 50 species, 194 

each with a constrained range of body mass: solid black lines indicate the mean and 95% confidence 195 

intervals. The black circle is the unconstrained dataset of 467 species. Data are taken from Damuth 196 
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(1987). The upper and lower dashed lines are the expected r
2
 derived from our analytical expression of 197 

the null model, with standard deviations in log(energy flux) of 1.25 and 1.65 respectively (see appendix 198 

for further details). 199 

 200 

 201 

202 
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Appendix S1: Analytical derivation for the expected explanatory power (r
2
) of the size-

density relationship under the energetic null model  

We start from the simple expression for r
2
, found in basic statistical texts:  

 r
2
 = 1 – SSE / SST Eqn A1 

In equation A1, SSE and SST are the sum of squared errors and the sum of squares of the 

dependent variable (logged abundance, logN), respectively. Under the null model of energy 

equivalence (no correlation between energy flux and mass), the error variance is simply the 

variance in log(energy flux). Here, we follow Brown et al. (2004) in using R (for ‘resource 

availability’) in place of energy flux: 

 SSE = Var(logR) Eqn A2 

 SST = Var(logN) Eqn A3 

 r
2
 = 1 – Var(logR) / Var(logN) Eqn A4 

Under the energetic paradigm, abundance is simply the energy available divided by the energy 

requirements of each individual: 

 N = R / I Eqn A5 

 logN = log(R / I) = logR – logI Eqn A6 

Substituting Eqn 6 into Eqn 4: 

  r
2
 = 1 – Var(logR) / Var(logR – logI) Eqn A7 

     = 1 – Var(logR) / [Var(logR) + Var(logI)] Eqn A8 

Substituting I for M: 

 logI  b.logM Eqn A9 

 r
2
 = 1 – Var(logR) / [Var(logR) + Var(b.logM)] Eqn A10 

     = 1 – Var(logR) / [Var(logR) + b
2
.Var(logM)] Eqn A11 

Finally, we substitute the variance in logM with the span in M (spanM, in orders of magnitude), 

by assuming a lognormal distribution of body masses, with 95% confidence limits equal to the 

observed span: 

r
2
 = 1 – Var(logR) / [Var(logR) + (b.spanM/1.96)

2
)] Eqn A12 

References 

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. (2004) Toward a 

metabolic theory of ecology. Ecology, 85, 1771-1789. 


	N018972Cover
	N018972Text
	N018972App

